College Algebra (MindTap Course List)
12th Edition
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:R. David Gustafson, Jeff Hughes
Chapter6: Linear Systems
Section6.5: Determinants
Problem 71E: Explain how to find the determinant of a 22 matrix.
Related questions
Question
![**Solving the Matrix Equation \(AX = B\)**
In this example, we are given the matrix equations \(A\), \(B\), and are required to solve for \(X\).
### Given Matrices:
\[ A = \begin{bmatrix} 1 & 5 \\ -2 & 8 \end{bmatrix} \]
\[ B = \begin{bmatrix} -24 \\ -24 \end{bmatrix} \]
### Matrix to Solve For:
\[ X = \begin{bmatrix} \Box \\ \Box \end{bmatrix} \]
### Steps to Solve:
1. **Identify the equation**: We have \(AX = B\).
2. **Set up the system of linear equations**:
- From the first row: \(1x_1 + 5x_2 = -24\)
- From the second row: \(-2x_1 + 8x_2 = -24\)
3. **Solve the system of linear equations**:
- We can use methods such as substitution, elimination, or matrix inversion to solve for \(x_1\) and \(x_2\).
### Solving using Matrix Inversion:
1. **Find the inverse of matrix \(A\)**:
\[ A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) \]
- Calculate the determinant of \(A\):
\[ \text{det}(A) = (1)(8) - (5)(-2) = 8 + 10 = 18 \]
- Find the adjugate of \(A\):
\[ \text{adj}(A) = \begin{bmatrix} 8 & -5 \\ 2 & 1 \end{bmatrix} \]
- Calculate the inverse:
\[ A^{-1} = \frac{1}{18} \begin{bmatrix} 8 & -5 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} \frac{8}{18} & \frac{-5}{18} \\ \frac{2}{18} & \frac{1}{18} \end{bmatrix} \]
2. **Multiply both sides by \(A^{-1}\)** to solve for \(X\):](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F57708f6a-cbd4-4295-9f28-330268fec57a%2F186292d2-e777-4bc8-82fc-2811c23fb152%2F6s3wx0k_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Solving the Matrix Equation \(AX = B\)**
In this example, we are given the matrix equations \(A\), \(B\), and are required to solve for \(X\).
### Given Matrices:
\[ A = \begin{bmatrix} 1 & 5 \\ -2 & 8 \end{bmatrix} \]
\[ B = \begin{bmatrix} -24 \\ -24 \end{bmatrix} \]
### Matrix to Solve For:
\[ X = \begin{bmatrix} \Box \\ \Box \end{bmatrix} \]
### Steps to Solve:
1. **Identify the equation**: We have \(AX = B\).
2. **Set up the system of linear equations**:
- From the first row: \(1x_1 + 5x_2 = -24\)
- From the second row: \(-2x_1 + 8x_2 = -24\)
3. **Solve the system of linear equations**:
- We can use methods such as substitution, elimination, or matrix inversion to solve for \(x_1\) and \(x_2\).
### Solving using Matrix Inversion:
1. **Find the inverse of matrix \(A\)**:
\[ A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) \]
- Calculate the determinant of \(A\):
\[ \text{det}(A) = (1)(8) - (5)(-2) = 8 + 10 = 18 \]
- Find the adjugate of \(A\):
\[ \text{adj}(A) = \begin{bmatrix} 8 & -5 \\ 2 & 1 \end{bmatrix} \]
- Calculate the inverse:
\[ A^{-1} = \frac{1}{18} \begin{bmatrix} 8 & -5 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} \frac{8}{18} & \frac{-5}{18} \\ \frac{2}{18} & \frac{1}{18} \end{bmatrix} \]
2. **Multiply both sides by \(A^{-1}\)** to solve for \(X\):
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you
![College Algebra (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305652231/9781305652231_smallCoverImage.gif)
College Algebra (MindTap Course List)
Algebra
ISBN:
9781305652231
Author:
R. David Gustafson, Jeff Hughes
Publisher:
Cengage Learning
![Intermediate Algebra](https://www.bartleby.com/isbn_cover_images/9780998625720/9780998625720_smallCoverImage.gif)
![Elementary Linear Algebra (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305658004/9781305658004_smallCoverImage.gif)
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning
![College Algebra (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305652231/9781305652231_smallCoverImage.gif)
College Algebra (MindTap Course List)
Algebra
ISBN:
9781305652231
Author:
R. David Gustafson, Jeff Hughes
Publisher:
Cengage Learning
![Intermediate Algebra](https://www.bartleby.com/isbn_cover_images/9780998625720/9780998625720_smallCoverImage.gif)
![Elementary Linear Algebra (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305658004/9781305658004_smallCoverImage.gif)
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![College Algebra](https://www.bartleby.com/isbn_cover_images/9781938168383/9781938168383_smallCoverImage.gif)