Solve the matrix equation AX = B for X. 16 448 B= -54 A = 48 X= - 16 12

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Matrix Problem Explanation**:

To solve the given matrix equation \( AX = B \) for \( X \), we need the inverse of matrix \( A \).

Given matrices:

\[
A = \begin{bmatrix} 1 & 6 \\ -5 & 4 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} -16 \\ 12 \end{bmatrix}
\]

We are looking for matrix \( X \) such that:

\[
X = \begin{bmatrix} \square \\ \square \end{bmatrix}
\]

**Steps to Solve:**

1. **Check for the Inversibility of Matrix \( A \)**:
   - Calculate the determinant of \( A \): 
     \[
     \text{det}(A) = (1)(4) - (-5)(6) = 4 + 30 = 34
     \]
   - Since the determinant is non-zero, \( A \) is invertible.

2. **Find the Inverse of Matrix \( A \)**:
   - The inverse \( A^{-1} \) can be found using the formula:
     \[
     A^{-1} = \frac{1}{\text{det}(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}
     \]
   - For matrix \( A \):
     \[
     A^{-1} = \frac{1}{34} \begin{bmatrix} 4 & -6 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} \frac{4}{34} & \frac{-6}{34} \\ \frac{5}{34} & \frac{1}{34} \end{bmatrix}
     \]

3. **Calculate Matrix \( X \)**:
   - Multiply \( A^{-1} \) by \( B \):
     \[
     X = A^{-1}B = \begin{bmatrix} \frac{4}{34} & \frac{-6}{34} \\ \frac{5}{34} & \frac{1}{34} \end{bmatrix} \begin{bmatrix} -16 \\ 12 \end{bmatrix}
     \]
   - Simplify the matrix multiplication to find \( X \).

By following
Transcribed Image Text:**Matrix Problem Explanation**: To solve the given matrix equation \( AX = B \) for \( X \), we need the inverse of matrix \( A \). Given matrices: \[ A = \begin{bmatrix} 1 & 6 \\ -5 & 4 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} -16 \\ 12 \end{bmatrix} \] We are looking for matrix \( X \) such that: \[ X = \begin{bmatrix} \square \\ \square \end{bmatrix} \] **Steps to Solve:** 1. **Check for the Inversibility of Matrix \( A \)**: - Calculate the determinant of \( A \): \[ \text{det}(A) = (1)(4) - (-5)(6) = 4 + 30 = 34 \] - Since the determinant is non-zero, \( A \) is invertible. 2. **Find the Inverse of Matrix \( A \)**: - The inverse \( A^{-1} \) can be found using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \] - For matrix \( A \): \[ A^{-1} = \frac{1}{34} \begin{bmatrix} 4 & -6 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} \frac{4}{34} & \frac{-6}{34} \\ \frac{5}{34} & \frac{1}{34} \end{bmatrix} \] 3. **Calculate Matrix \( X \)**: - Multiply \( A^{-1} \) by \( B \): \[ X = A^{-1}B = \begin{bmatrix} \frac{4}{34} & \frac{-6}{34} \\ \frac{5}{34} & \frac{1}{34} \end{bmatrix} \begin{bmatrix} -16 \\ 12 \end{bmatrix} \] - Simplify the matrix multiplication to find \( X \). By following
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,