Solve the linear system X1 + x₂ + x3 + x4 = 1 3x₁ + x₂ + x3 x4 = 5 5x₁ - x2 + x3 - 5x4 = 3 Describe the solution set geometrically.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem 1**: Solve the linear system

\[
\begin{align*}
x_1 + x_2 + x_3 + x_4 &= 1 \\
3x_1 + x_2 + x_3 - x_4 &= 5 \\
5x_1 - x_2 + x_3 - 5x_4 &= 3
\end{align*}
\]

**Task**: Describe the solution set geometrically.
Transcribed Image Text:**Problem 1**: Solve the linear system \[ \begin{align*} x_1 + x_2 + x_3 + x_4 &= 1 \\ 3x_1 + x_2 + x_3 - x_4 &= 5 \\ 5x_1 - x_2 + x_3 - 5x_4 &= 3 \end{align*} \] **Task**: Describe the solution set geometrically.
Expert Solution
Step 1

The augmented matrix for given system of equations is

                                            [AB]=11111311-155-11-53

Apply the row operators R2R2-3R1   and R3R3-5R1

                                    [AB]=111110-2-2-420-6-4-10-2

Apply  R3R3-3R2

                                    [AB]=111110-2-2-420022-8

Apply  -12R2  and 12R3

                                  [AB]=111110112-10011-4

This is row reduced echelon (RREF) form of the matrix AB. Since number of equations(3) is less than to number of variables(4) so the system has infinite number of solutions.

steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,