Solve the given system of linear equations using the Gauss- Jordan Elimination. 1.)  3x - 2y + 8z = 9        -2x + 2y + z = 3         x + 2y - 3z = 8

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Solve the given system of linear equations using the Gauss- Jordan Elimination.

1.)  3x - 2y + 8z = 9
       -2x + 2y + z = 3
        x + 2y - 3z = 8

See the example/format below...

-3R2 + Ri 中Ri
3
-IR3
+Ri
メ+ Oy + 2 313
OK + y +0z 2
OxtOy + 2 に3 2=3
+0z=D2D
Y = 2
%3D
そ=3
%3D
Transcribed Image Text:-3R2 + Ri 中Ri 3 -IR3 +Ri メ+ Oy + 2 313 OK + y +0z 2 OxtOy + 2 に3 2=3 +0z=D2D Y = 2 %3D そ=3 %3D
2.) X+ 3y t Z = 10
メ - 2y - 2 = -
2x + y + 2z = 10
Sol'n !
2.
10
-2
-6
10
2 1
2.
ー1R,+ Rz R2
-2R, + R, D Rg
T0
-2
o -S
-10
R2<->Rg (swap)
10
ー10
-5
-16
-2
-5
Rz- Rz D Rg
3
10
o-5
2.
-10
R2
$ Rz
-5
R3
2.
3
10
2.
1
3
12
|
3.
a- Mu
Transcribed Image Text:2.) X+ 3y t Z = 10 メ - 2y - 2 = - 2x + y + 2z = 10 Sol'n ! 2. 10 -2 -6 10 2 1 2. ー1R,+ Rz R2 -2R, + R, D Rg T0 -2 o -S -10 R2<->Rg (swap) 10 ー10 -5 -16 -2 -5 Rz- Rz D Rg 3 10 o-5 2. -10 R2 $ Rz -5 R3 2. 3 10 2. 1 3 12 | 3. a- Mu
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,