Solve the given linear programming problem using the table method. The table of basic solutions is provided.   Maximize P=15x1+6 subject to    x1+x2≤6                     x1+4x2≤12                     x1​, x2≥0   x1      x2        s1       s2       ​Feasible? 0       0          6        12           Yes 0       6          0       −12          No 0       3          3          0           Yes 6       0          0          6           Yes 12      0        −6         0           No 4       2          0          0           Yes

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Solve the given linear programming problem using the table method. The table of basic solutions is provided.
 
Maximize P=15x1+6
subject to    x1+x2≤6
                    x1+4x2≤12
                    x1​, x2≥0
 
x1      x2        s1       s2       ​Feasible?
0       0          6        12           Yes
0       6          0       −12          No
0       3          3          0           Yes
6       0          0          6           Yes
12      0        −6         0           No
4       2          0          0           Yes
 
Select the correct choice below​ and, if​ necessary, fill in the answer boxes within your choice.
A.
The function is maximized when x1=enter your response here​, x2=enter your response here s1=enter your response here​, and s2=enter your response here​, where P=enter your response here.
​(Simplify your​ answers.)
B.
The system has no solution.

 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 9 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,