Solve the given differential equation by undetermined coefficients. y"+2y=-18x²2x

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question
Solve the given differential equation by undetermined coefficients.
y(x) =
y" + 2y = -18x²2x
exp(x) (C₁ cos(√3 x) + C² sin(√3 x)) + −4x² + 3x − 2
C₁ sin(√2 x) + C₂ cos(√2 x) + exp(2x) (−3x² + 4x − 5/3)
exp(-x) (C₁ sin(√2 x) + C₂ cos(√2 x)) + exp(2x) (2x² - 5x + 4/3)
C₁ exp(2x) + C₂ x exp(2x) + exp(-2x) ( −2x³ + 5x² – 3x/4)
C₁ sin(x/2) + C₂ cos(x/2) - exp(2x) ( 3x² + 2x - 3/5)
C₁ exp(2x) + C₂ exp(-2x) + exp(x) (2x² + 3x - 1/3)
0
No solution
Transcribed Image Text:Solve the given differential equation by undetermined coefficients. y(x) = y" + 2y = -18x²2x exp(x) (C₁ cos(√3 x) + C² sin(√3 x)) + −4x² + 3x − 2 C₁ sin(√2 x) + C₂ cos(√2 x) + exp(2x) (−3x² + 4x − 5/3) exp(-x) (C₁ sin(√2 x) + C₂ cos(√2 x)) + exp(2x) (2x² - 5x + 4/3) C₁ exp(2x) + C₂ x exp(2x) + exp(-2x) ( −2x³ + 5x² – 3x/4) C₁ sin(x/2) + C₂ cos(x/2) - exp(2x) ( 3x² + 2x - 3/5) C₁ exp(2x) + C₂ exp(-2x) + exp(x) (2x² + 3x - 1/3) 0 No solution
Expert Solution
steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,