Solve the given differential equation by undetermined coefficients. y"+2y=-18x²2x
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Solve the given differential equation by undetermined coefficients.
y(x) =
y" + 2y = -18x²2x
exp(x) (C₁ cos(√3 x) + C² sin(√3 x)) + −4x² + 3x − 2
C₁ sin(√2 x) + C₂ cos(√2 x) + exp(2x) (−3x² + 4x − 5/3)
exp(-x) (C₁ sin(√2 x) + C₂ cos(√2 x)) + exp(2x) (2x² - 5x + 4/3)
C₁ exp(2x) + C₂ x exp(2x) + exp(-2x) ( −2x³ + 5x² – 3x/4)
C₁ sin(x/2) + C₂ cos(x/2) - exp(2x) ( 3x² + 2x - 3/5)
C₁ exp(2x) + C₂ exp(-2x) + exp(x) (2x² + 3x - 1/3)
0
No solution](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F2e521a1e-f4ee-4c02-af71-8dfc2cc184d3%2F764a3cb6-20f8-4b01-9061-d1e99d9f3edf%2Fk5hkya8_processed.png&w=3840&q=75)
Transcribed Image Text:Solve the given differential equation by undetermined coefficients.
y(x) =
y" + 2y = -18x²2x
exp(x) (C₁ cos(√3 x) + C² sin(√3 x)) + −4x² + 3x − 2
C₁ sin(√2 x) + C₂ cos(√2 x) + exp(2x) (−3x² + 4x − 5/3)
exp(-x) (C₁ sin(√2 x) + C₂ cos(√2 x)) + exp(2x) (2x² - 5x + 4/3)
C₁ exp(2x) + C₂ x exp(2x) + exp(-2x) ( −2x³ + 5x² – 3x/4)
C₁ sin(x/2) + C₂ cos(x/2) - exp(2x) ( 3x² + 2x - 3/5)
C₁ exp(2x) + C₂ exp(-2x) + exp(x) (2x² + 3x - 1/3)
0
No solution
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)