Solve the following differential equations. Express the solution of the given initial value problem in terms of convolution integral. a) y"+w²y = g(t), y(0) = 0, y'(0) = 1 3.
Solve the following differential equations. Express the solution of the given initial value problem in terms of convolution integral. a) y"+w²y = g(t), y(0) = 0, y'(0) = 1 3.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Plz do both parts and take a thumb up
![**Problem 3: Differential Equations and Convolution Integrals**
Solve the following differential equations. Express the solution of the given initial value problem in terms of a convolution integral.
a) \( y'' + \omega^2 y = g(t), \quad y(0) = 0, \quad y'(0) = 1 \)
b) \( y'' + 2y' + y = \int_{0}^{t} \tau e^{-(t-\tau)} \, d\tau, \quad y(0) = y'(0) = 0 \)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4b2b9d69-854a-4c26-a639-4c378ed4e00f%2F54a7399e-0377-4642-a8c5-f3cc4078ae77%2Flryf9z5_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem 3: Differential Equations and Convolution Integrals**
Solve the following differential equations. Express the solution of the given initial value problem in terms of a convolution integral.
a) \( y'' + \omega^2 y = g(t), \quad y(0) = 0, \quad y'(0) = 1 \)
b) \( y'' + 2y' + y = \int_{0}^{t} \tau e^{-(t-\tau)} \, d\tau, \quad y(0) = y'(0) = 0 \)
![### Formulas to Remember
1. **Laplace Transform:**
\[
\mathcal{L}(e^{at}f(t)) = F(s-a);
\]
This formula shows the Laplace transform of a function multiplied by an exponential term.
2. **Inverse Laplace Transform:**
\[
\mathcal{L}^{-1}(F(s-a)) = e^{at}f(t) \quad \text{where} \quad f(t) = \mathcal{L}^{-1}(F(s))
\]
The inverse Laplace transform retrieves the original function with an exponential term.
3. **Laplace Transform with Unit Step Function:**
\[
\mathcal{L}(f(t-c)U_c(t)) = e^{-cs}L(f(t));
\]
This applies the Laplace transform to functions with delayed unit step functions.
4. **Inverse Laplace Transform with Unit Step Function:**
\[
\mathcal{L}^{-1}(e^{-cs}F(s)) = f(t-c)U_c(t) \quad \text{where} \quad f(t) = \mathcal{L}^{-1}(F(s))
\]
This formula helps in identifying shifted functions in time domain.
5. **Laplace of Delta Function:**
\[
\mathcal{L}(\delta(t-c)) = e^{-cs};
\]
It shows the Laplace transform of a shifted delta function.
6. **Product of Laplace Transforms:**
\[
\mathcal{L}(f(t)g(t)) = F(s)G(s);
\]
The Laplace transform of a product of functions is a product of their transforms.
7. **Inverse Product of Laplace Transforms:**
\[
\mathcal{L}^{-1}(F(s)G(s)) = f(t) \ast g(t)
\]
This is the inverse Laplace corresponding to the convolution product.
8. **Convolution in Time Domain:**
\[
f(t) \ast g(t) = \int_{0}^{t} f(\tau)g(t-\tau)d\tau = \int_{0}^{t} g(\tau)f(t-\tau)d\tau
\]
It defines the convolution of two](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4b2b9d69-854a-4c26-a639-4c378ed4e00f%2F54a7399e-0377-4642-a8c5-f3cc4078ae77%2Fxv9kc8m_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Formulas to Remember
1. **Laplace Transform:**
\[
\mathcal{L}(e^{at}f(t)) = F(s-a);
\]
This formula shows the Laplace transform of a function multiplied by an exponential term.
2. **Inverse Laplace Transform:**
\[
\mathcal{L}^{-1}(F(s-a)) = e^{at}f(t) \quad \text{where} \quad f(t) = \mathcal{L}^{-1}(F(s))
\]
The inverse Laplace transform retrieves the original function with an exponential term.
3. **Laplace Transform with Unit Step Function:**
\[
\mathcal{L}(f(t-c)U_c(t)) = e^{-cs}L(f(t));
\]
This applies the Laplace transform to functions with delayed unit step functions.
4. **Inverse Laplace Transform with Unit Step Function:**
\[
\mathcal{L}^{-1}(e^{-cs}F(s)) = f(t-c)U_c(t) \quad \text{where} \quad f(t) = \mathcal{L}^{-1}(F(s))
\]
This formula helps in identifying shifted functions in time domain.
5. **Laplace of Delta Function:**
\[
\mathcal{L}(\delta(t-c)) = e^{-cs};
\]
It shows the Laplace transform of a shifted delta function.
6. **Product of Laplace Transforms:**
\[
\mathcal{L}(f(t)g(t)) = F(s)G(s);
\]
The Laplace transform of a product of functions is a product of their transforms.
7. **Inverse Product of Laplace Transforms:**
\[
\mathcal{L}^{-1}(F(s)G(s)) = f(t) \ast g(t)
\]
This is the inverse Laplace corresponding to the convolution product.
8. **Convolution in Time Domain:**
\[
f(t) \ast g(t) = \int_{0}^{t} f(\tau)g(t-\tau)d\tau = \int_{0}^{t} g(\tau)f(t-\tau)d\tau
\]
It defines the convolution of two
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)