Solve the following differential equation ý +y= , y(0) = 0, y (0) = 1 sin sin cos1 + ain 3 sin t y() %3D -21 cost+ sin t %3D 1 O y(t) = 1 1 sin t Cos t -

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Please show work
Solve the following differential equation:

\[ y'' + y = e^{2t}, \quad y(0) = 0, \quad y'(0) = 1 \]

Options:

1. \( y(t) = \frac{1}{5} e^{2t} - \frac{1}{5} \cos t - \frac{3}{5} \sin t \)

2. \( y(t) = \frac{1}{5} e^{2t} - \frac{1}{5} \cos t + \frac{1}{5} \sin t \)

3. \( y(t) = \frac{1}{5} e^{2t} - \frac{1}{5} \cos t + \frac{3}{5} \sin t \)

4. \( y(t) = \frac{1}{5} e^{-2t} - \frac{1}{5} \cos t + \frac{3}{5} \sin t \)

5. \( y(t) = \frac{1}{5} e^{2t} + \frac{1}{5} \cos t - \frac{1}{5} \sin t \)
Transcribed Image Text:Solve the following differential equation: \[ y'' + y = e^{2t}, \quad y(0) = 0, \quad y'(0) = 1 \] Options: 1. \( y(t) = \frac{1}{5} e^{2t} - \frac{1}{5} \cos t - \frac{3}{5} \sin t \) 2. \( y(t) = \frac{1}{5} e^{2t} - \frac{1}{5} \cos t + \frac{1}{5} \sin t \) 3. \( y(t) = \frac{1}{5} e^{2t} - \frac{1}{5} \cos t + \frac{3}{5} \sin t \) 4. \( y(t) = \frac{1}{5} e^{-2t} - \frac{1}{5} \cos t + \frac{3}{5} \sin t \) 5. \( y(t) = \frac{1}{5} e^{2t} + \frac{1}{5} \cos t - \frac{1}{5} \sin t \)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,