Solve for Y(s), the Laplace transform of the solution y(t) to the initial value problem below. y" +9y = 5t³, y(0) = 0, y'(0) = 0
Solve for Y(s), the Laplace transform of the solution y(t) to the initial value problem below. y" +9y = 5t³, y(0) = 0, y'(0) = 0
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
8
Help for Laplace transform
![### Solving for Y(s), the Laplace Transform of y(t)
To find Y(s), the Laplace transform of the solution \( y(t) \) to the given initial value problem, follow the steps below.
#### Initial Value Problem
The differential equation and initial conditions provided are:
\[ y'' + 9y = 5t^3 \]
\[ y(0) = 0 \]
\[ y'(0) = 0 \]
#### Steps to Solve:
1. **Take the Laplace Transform of Both Sides.**
The Laplace transform of the left-hand side is:
\[
\mathcal{L}\{y''(t)\} + 9\mathcal{L}\{y(t)\}
\]
Applying the Laplace transform to each term:
\[
\mathcal{L}\{y''(t)\} = s^2Y(s) - sy(0) - y'(0)
\]
\[
\mathcal{L}\{y(t)\} = Y(s)
\]
Given the initial conditions \( y(0) = 0 \) and \( y'(0) = 0 \), the equation simplifies to:
\[
s^2Y(s) + 9Y(s)
\]
2. **Taking the Laplace Transform of the Right-Hand Side:**
\[
\mathcal{L}\{5t^3\}
\]
The Laplace transform of \( t^n \) is \( \frac{n!}{s^{n+1}} \). For \( t^3 \), it is:
\[
\mathcal{L}\{t^3\} = \frac{3!}{s^4} = \frac{6}{s^4}
\]
Therefore:
\[
\mathcal{L}\{5t^3\} = 5 \cdot \frac{6}{s^4} = \frac{30}{s^4}
\]
3. **Combine and Solve for \( Y(s) \):**
\[
s^2Y(s) + 9Y(s) = \frac{30}{s^4}
\]
Factor out \( Y(s) \):
\[
Y(s)(s](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fbbba0909-7b4f-4e80-8e24-06dfda2d061e%2F0ce65d51-0afb-42bf-a666-8327360cc2ea%2Ftn4kvwl8_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Solving for Y(s), the Laplace Transform of y(t)
To find Y(s), the Laplace transform of the solution \( y(t) \) to the given initial value problem, follow the steps below.
#### Initial Value Problem
The differential equation and initial conditions provided are:
\[ y'' + 9y = 5t^3 \]
\[ y(0) = 0 \]
\[ y'(0) = 0 \]
#### Steps to Solve:
1. **Take the Laplace Transform of Both Sides.**
The Laplace transform of the left-hand side is:
\[
\mathcal{L}\{y''(t)\} + 9\mathcal{L}\{y(t)\}
\]
Applying the Laplace transform to each term:
\[
\mathcal{L}\{y''(t)\} = s^2Y(s) - sy(0) - y'(0)
\]
\[
\mathcal{L}\{y(t)\} = Y(s)
\]
Given the initial conditions \( y(0) = 0 \) and \( y'(0) = 0 \), the equation simplifies to:
\[
s^2Y(s) + 9Y(s)
\]
2. **Taking the Laplace Transform of the Right-Hand Side:**
\[
\mathcal{L}\{5t^3\}
\]
The Laplace transform of \( t^n \) is \( \frac{n!}{s^{n+1}} \). For \( t^3 \), it is:
\[
\mathcal{L}\{t^3\} = \frac{3!}{s^4} = \frac{6}{s^4}
\]
Therefore:
\[
\mathcal{L}\{5t^3\} = 5 \cdot \frac{6}{s^4} = \frac{30}{s^4}
\]
3. **Combine and Solve for \( Y(s) \):**
\[
s^2Y(s) + 9Y(s) = \frac{30}{s^4}
\]
Factor out \( Y(s) \):
\[
Y(s)(s
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)