Solve for x. 85⁰ 115⁰ 130⁰ X 95°

Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
ChapterP: Preliminary Concepts
SectionP.CT: Test
Problem 1CT
icon
Related questions
Question

help me please!

**Problem: Solve for \( x \).**

The diagram is a pentagon with the interior angles labeled as follows:

- Top left angle: \( 85^\circ \)
- Top angle: \( 115^\circ \)
- Top right angle: \( 95^\circ \)
- Bottom right angle: \( x \)
- Bottom left angle: \( 130^\circ \)

**Explanation:**

To solve for \( x \), we need to use the formula for the sum of the interior angles of a pentagon.

The sum of the interior angles of a polygon is given by: 

\[
\text{Sum} = (n-2) \times 180^\circ 
\]

where \( n \) is the number of sides. For a pentagon, \( n = 5 \).

So, the sum of the interior angles is:

\[
(5-2) \times 180^\circ = 3 \times 180^\circ = 540^\circ
\]

Now, let's set up the equation using the given angles:

\[
85^\circ + 115^\circ + 95^\circ + 130^\circ + x = 540^\circ
\]

Adding these angles:

\[
425^\circ + x = 540^\circ
\]

Subtracting \( 425^\circ \) from both sides:

\[
x = 540^\circ - 425^\circ = 115^\circ
\]

Therefore, \( x = 115^\circ \).
Transcribed Image Text:**Problem: Solve for \( x \).** The diagram is a pentagon with the interior angles labeled as follows: - Top left angle: \( 85^\circ \) - Top angle: \( 115^\circ \) - Top right angle: \( 95^\circ \) - Bottom right angle: \( x \) - Bottom left angle: \( 130^\circ \) **Explanation:** To solve for \( x \), we need to use the formula for the sum of the interior angles of a pentagon. The sum of the interior angles of a polygon is given by: \[ \text{Sum} = (n-2) \times 180^\circ \] where \( n \) is the number of sides. For a pentagon, \( n = 5 \). So, the sum of the interior angles is: \[ (5-2) \times 180^\circ = 3 \times 180^\circ = 540^\circ \] Now, let's set up the equation using the given angles: \[ 85^\circ + 115^\circ + 95^\circ + 130^\circ + x = 540^\circ \] Adding these angles: \[ 425^\circ + x = 540^\circ \] Subtracting \( 425^\circ \) from both sides: \[ x = 540^\circ - 425^\circ = 115^\circ \] Therefore, \( x = 115^\circ \).
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Elementary Geometry For College Students, 7e
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,
Elementary Geometry for College Students
Elementary Geometry for College Students
Geometry
ISBN:
9781285195698
Author:
Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:
Cengage Learning