Solve for the specified value of the following right triangle. Round your answer to the nearest hundredth. If A = 42° and c = 89 cm, find b. 80.14 cm 59.55 cm 70.32 cm O 66.14 cm

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question
**Example Problem: Solving a Right Triangle**

**Problem Statement:**
Solve for the specified value of the following right triangle. Round your answer to the nearest hundredth. If \( A = 42^\circ \) and \( c = 89 \, \text{cm} \), find \( b \).

**Options:**
1. \( 80.14 \, \text{cm} \)
2. \( 59.55 \, \text{cm} \)
3. \( 70.32 \, \text{cm} \)
4. \( 66.14 \, \text{cm} \)

**Explanation:**
In a right triangle, \( c \) represents the hypotenuse, while \( A \) represents one of the acute angles. To solve for \( b \) (the side opposite angle \( A \)), we can use the sine function from trigonometry, because sine relates the angle to the ratio of the opposite side over the hypotenuse:

\[ \sin(A) = \frac{b}{c} \]

Given:
- \( A = 42^\circ \)
- \( c = 89 \, \text{cm} \)

We need to find \( b \):

\[ \sin(42^\circ) = \frac{b}{89 \, \text{cm}} \]

Rearranging to solve for \( b \):

\[ b = 89 \, \text{cm} \times \sin(42^\circ) \]

Using a calculator to find \( \sin(42^\circ) \):

\[ \sin(42^\circ) \approx 0.6691 \]

Thus:

\[ b = 89 \, \text{cm} \times 0.6691 \]
\[ b \approx 59.55 \, \text{cm} \]

**Answer:**
\( b \approx 59.55 \, \text{cm} \)

So, the correct option is:

2. \( 59.55 \, \text{cm} \)
Transcribed Image Text:**Example Problem: Solving a Right Triangle** **Problem Statement:** Solve for the specified value of the following right triangle. Round your answer to the nearest hundredth. If \( A = 42^\circ \) and \( c = 89 \, \text{cm} \), find \( b \). **Options:** 1. \( 80.14 \, \text{cm} \) 2. \( 59.55 \, \text{cm} \) 3. \( 70.32 \, \text{cm} \) 4. \( 66.14 \, \text{cm} \) **Explanation:** In a right triangle, \( c \) represents the hypotenuse, while \( A \) represents one of the acute angles. To solve for \( b \) (the side opposite angle \( A \)), we can use the sine function from trigonometry, because sine relates the angle to the ratio of the opposite side over the hypotenuse: \[ \sin(A) = \frac{b}{c} \] Given: - \( A = 42^\circ \) - \( c = 89 \, \text{cm} \) We need to find \( b \): \[ \sin(42^\circ) = \frac{b}{89 \, \text{cm}} \] Rearranging to solve for \( b \): \[ b = 89 \, \text{cm} \times \sin(42^\circ) \] Using a calculator to find \( \sin(42^\circ) \): \[ \sin(42^\circ) \approx 0.6691 \] Thus: \[ b = 89 \, \text{cm} \times 0.6691 \] \[ b \approx 59.55 \, \text{cm} \] **Answer:** \( b \approx 59.55 \, \text{cm} \) So, the correct option is: 2. \( 59.55 \, \text{cm} \)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning