Solve for A. 3 -1 1 0 A = -3 8. 0 1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

2.1

11.

pls help

 

**Solve for A.**

The given matrix equation is:

\[
\begin{bmatrix}
3 & -1 \\
8 & -3
\end{bmatrix}
A = 
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]

Matrix \( A \) is denoted as:

\[
A = 
\begin{bmatrix}
\Box & \Box \\
\Box & \Box
\end{bmatrix}
\]

This setup involves multiplying the matrix 
\[
\begin{bmatrix}
3 & -1 \\
8 & -3
\end{bmatrix}
\] 
by matrix \( A \) to result in the identity matrix 
\[
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\].

The empty boxes represent the elements of matrix \( A \) to be determined. Green arrows are provided to guide how the rows and columns should be considered for the multiplication process in order to solve for the elements of \( A \).
Transcribed Image Text:**Solve for A.** The given matrix equation is: \[ \begin{bmatrix} 3 & -1 \\ 8 & -3 \end{bmatrix} A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \] Matrix \( A \) is denoted as: \[ A = \begin{bmatrix} \Box & \Box \\ \Box & \Box \end{bmatrix} \] This setup involves multiplying the matrix \[ \begin{bmatrix} 3 & -1 \\ 8 & -3 \end{bmatrix} \] by matrix \( A \) to result in the identity matrix \[ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]. The empty boxes represent the elements of matrix \( A \) to be determined. Green arrows are provided to guide how the rows and columns should be considered for the multiplication process in order to solve for the elements of \( A \).
Expert Solution
Step 1

To find A for the given matrix equation

3-18-3A=1001

 

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,