Solve all triangles where A = 44°, a = 11in, b = 9in (round all values to 1 decimal place) B= C = C O in

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
### Solving Triangles with Given Conditions

**Problem Statement:**
Solve all triangles where the following conditions are given:
- Angle \( A = 44^\circ \)
- Side \( a = 11 \text{ in} \)
- Side \( b = 9 \text{ in} \)

*Note: Round all values to one decimal place.*

**Solution:**
To solve for the missing angles and side, use the Law of Sines.

#### 1. Using the Law of Sines
The Law of Sines states:

\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
\]

Given:
- \( a = 11 \text{ in} \)
- \( b = 9 \text{ in} \)
- \( A = 44^\circ \)

#### 2. Solving for \( B \)

\[
\frac{11}{\sin 44^\circ} = \frac{9}{\sin B}
\]

Calculate \( \sin 44^\circ \):

\[
\sin 44^\circ \approx 0.694
\]

Substitute and solve for \( \sin B \):

\[
\frac{11}{0.694} = \frac{9}{\sin B}
\]

\[
15.85 = \frac{9}{\sin B}
\]

\[
\sin B = \frac{9}{15.85}
\]

\[
\sin B \approx 0.568
\]

Find \( B \):

\[
B \approx \sin^{-1}(0.568)
\]

\[
B \approx 34.7^\circ
\]

#### 3. Solving for \( C \)
Since the sum of angles in a triangle is \( 180^\circ \):

\[
C = 180^\circ - A - B
\]

\[
C = 180^\circ - 44^\circ - 34.7^\circ
\]

\[
C \approx 101.3^\circ
\]

#### 4. Solving for \( c \)
Using the Law of Sines again:

\[
\frac{a}{\sin A} = \frac{c}{\sin C}
\]

Substitute known values:

\[
\frac{11}{0.694
Transcribed Image Text:### Solving Triangles with Given Conditions **Problem Statement:** Solve all triangles where the following conditions are given: - Angle \( A = 44^\circ \) - Side \( a = 11 \text{ in} \) - Side \( b = 9 \text{ in} \) *Note: Round all values to one decimal place.* **Solution:** To solve for the missing angles and side, use the Law of Sines. #### 1. Using the Law of Sines The Law of Sines states: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] Given: - \( a = 11 \text{ in} \) - \( b = 9 \text{ in} \) - \( A = 44^\circ \) #### 2. Solving for \( B \) \[ \frac{11}{\sin 44^\circ} = \frac{9}{\sin B} \] Calculate \( \sin 44^\circ \): \[ \sin 44^\circ \approx 0.694 \] Substitute and solve for \( \sin B \): \[ \frac{11}{0.694} = \frac{9}{\sin B} \] \[ 15.85 = \frac{9}{\sin B} \] \[ \sin B = \frac{9}{15.85} \] \[ \sin B \approx 0.568 \] Find \( B \): \[ B \approx \sin^{-1}(0.568) \] \[ B \approx 34.7^\circ \] #### 3. Solving for \( C \) Since the sum of angles in a triangle is \( 180^\circ \): \[ C = 180^\circ - A - B \] \[ C = 180^\circ - 44^\circ - 34.7^\circ \] \[ C \approx 101.3^\circ \] #### 4. Solving for \( c \) Using the Law of Sines again: \[ \frac{a}{\sin A} = \frac{c}{\sin C} \] Substitute known values: \[ \frac{11}{0.694
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning