Solve AABC. Round decimal answers to the nearest tenth. A 23 14 'В 25 O A B C~° O

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Solving Triangle ABC

To solve triangle \( \triangle ABC \), follow these instructions and calculations.

#### Instructions:
- **Round decimal answers to the nearest tenth.**

#### Given:
- Side \( AC = 23 \)
- Side \( AB = 14 \)
- Side \( CB = 25 \)

#### Steps:

1. **Using the Law of Cosines to find the angles:**

   - For angle \( A \):
     \[
     \cos(A) = \frac{b^2 + c^2 - a^2}{2bc}
     \]
     Here, \( a = 25 \), \( b = 23 \), \( c = 14 \):
     \[
     \cos(A) = \frac{23^2 + 14^2 - 25^2}{2 \cdot 23 \cdot 14}
     \]

   - For angle \( B \):
     \[
     \cos(B) = \frac{a^2 + c^2 - b^2}{2ac}
     \]
     Here, \( a = 25 \), \( b = 14 \), \( c = 23 \):
     \[
     \cos(B) = \frac{25^2 + 14^2 - 23^2}{2 \cdot 25 \cdot 23}
     \]

   - For angle \( C \):
     \[
     \cos(C) = \frac{a^2 + b^2 - c^2}{2ab}
     \]
     Here, \( a = 14 \), \( b = 23 \), \( c = 25 \):
     \[
     \cos(C) = \frac{14^2 + 23^2 - 25^2}{2 \cdot 14 \cdot 23}
     \]

2. **Calculate the actual values for each angle:**

   - **Angle \( A \):**
     \[
     \cos(A) = \frac{529 + 196 - 625}{2 \cdot 23 \cdot 14} = \frac{100}{644} = 0.1553
     \]
     \[
     A = \cos^{-1}(0.1553) \approx 81.0^\circ
     \]

   - **Angle \( B \):**
Transcribed Image Text:### Solving Triangle ABC To solve triangle \( \triangle ABC \), follow these instructions and calculations. #### Instructions: - **Round decimal answers to the nearest tenth.** #### Given: - Side \( AC = 23 \) - Side \( AB = 14 \) - Side \( CB = 25 \) #### Steps: 1. **Using the Law of Cosines to find the angles:** - For angle \( A \): \[ \cos(A) = \frac{b^2 + c^2 - a^2}{2bc} \] Here, \( a = 25 \), \( b = 23 \), \( c = 14 \): \[ \cos(A) = \frac{23^2 + 14^2 - 25^2}{2 \cdot 23 \cdot 14} \] - For angle \( B \): \[ \cos(B) = \frac{a^2 + c^2 - b^2}{2ac} \] Here, \( a = 25 \), \( b = 14 \), \( c = 23 \): \[ \cos(B) = \frac{25^2 + 14^2 - 23^2}{2 \cdot 25 \cdot 23} \] - For angle \( C \): \[ \cos(C) = \frac{a^2 + b^2 - c^2}{2ab} \] Here, \( a = 14 \), \( b = 23 \), \( c = 25 \): \[ \cos(C) = \frac{14^2 + 23^2 - 25^2}{2 \cdot 14 \cdot 23} \] 2. **Calculate the actual values for each angle:** - **Angle \( A \):** \[ \cos(A) = \frac{529 + 196 - 625}{2 \cdot 23 \cdot 14} = \frac{100}{644} = 0.1553 \] \[ A = \cos^{-1}(0.1553) \approx 81.0^\circ \] - **Angle \( B \):**
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,