So that S[z1,z2] S1 [21] + S₂[z2]. Hence the resulting 'uncoupled' EL equations are given by z + 10Z1 The solutions are y1 = 1 10 = (Z1 - 3z2) = 0, z = 0. Z1 = A. cos 10x + B. sin 10x, Z2 = Cx + D. Translating these back to give solutions in terms of the original dependent variables gives why not use ± √√To ? ?
So that S[z1,z2] S1 [21] + S₂[z2]. Hence the resulting 'uncoupled' EL equations are given by z + 10Z1 The solutions are y1 = 1 10 = (Z1 - 3z2) = 0, z = 0. Z1 = A. cos 10x + B. sin 10x, Z2 = Cx + D. Translating these back to give solutions in terms of the original dependent variables gives why not use ± √√To ? ?
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Hence the two required functionals are
So that
Changing Dependent Variables
The solutions are
S[Z1, Z2] S₁ [21] + S₂[z2].
Hence the resulting 'uncoupled' EL equations are given by
z₁ + 10Z₁ = 0, z = 0.
у1 =
Z1 = A. cos 10x + B. sin √10x, z2 = Cx + D.
Translating these back to give solutions in terms of the original dependent variables gives
=
1
=
dx
51/21-/ dr (10 (26²-2²).
S2[²2] = / dx (11(²2)²2).
-(Z1 - 3z2)
10
1
((A.C cos √√10x + B. sin √10x) − 3(Cx + D))
3C
3D
B
10
10
10
Here I'd absorb the constant factors and write this as y₁ = A cos √10x + B sin √10x + Cx + D.
10
A
10
cos √ 10x +
why not use
sin √10x
± √TO ? ?
-X-](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F59d44c96-efb1-4f3c-83b3-5a6a84cf94cb%2F385c334d-cdde-4ee7-9324-177adc81a20c%2Fkbjphtq_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Hence the two required functionals are
So that
Changing Dependent Variables
The solutions are
S[Z1, Z2] S₁ [21] + S₂[z2].
Hence the resulting 'uncoupled' EL equations are given by
z₁ + 10Z₁ = 0, z = 0.
у1 =
Z1 = A. cos 10x + B. sin √10x, z2 = Cx + D.
Translating these back to give solutions in terms of the original dependent variables gives
=
1
=
dx
51/21-/ dr (10 (26²-2²).
S2[²2] = / dx (11(²2)²2).
-(Z1 - 3z2)
10
1
((A.C cos √√10x + B. sin √10x) − 3(Cx + D))
3C
3D
B
10
10
10
Here I'd absorb the constant factors and write this as y₁ = A cos √10x + B sin √10x + Cx + D.
10
A
10
cos √ 10x +
why not use
sin √10x
± √TO ? ?
-X-
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)