Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Topic Video
Question
![**Mathematical Simplification Example**
In this exercise, we aim to simplify a given mathematical expression involving summation notation (Σ). Below is the expression to be simplified:
\[ \text{Simplify } \sum_{i=1}^{n} \left( \frac{2i}{n} - \left( \frac{2i}{n} \right)^2 \right) \cdot \frac{2}{n} \]
### Explanation:
1. **Summation Notation (Σ):**
- The summation notation \(\sum_{i=1}^{n}\) indicates that the expression inside the summation symbol should be summed as \(i\) ranges from 1 to \(n\).
2. **Inside the Summation:**
- The expression inside the summation is \(\left( \frac{2i}{n} - \left( \frac{2i}{n} \right)^2 \right) \cdot \frac{2}{n}\).
3. **Breakdown of the Expression:**
- \(\frac{2i}{n}\) is a general term that depends on the index \(i\).
- \(\left( \frac{2i}{n} \right)^2\) is the square of the term \(\frac{2i}{n}\).
- These are subtracted from each other inside the parentheses.
- The entire expression \(\left( \frac{2i}{n} - \left( \frac{2i}{n} \right)^2 \right)\) is then multiplied by \(\frac{2}{n}\).
### Steps to Simplify:
1. **Combine Like Terms:**
- Distribute \(\frac{2}{n}\) to both terms inside the parentheses:
\[
\sum_{i=1}^{n} \left( \frac{2i}{n} \cdot \frac{2}{n} - \left( \frac{2i}{n} \right)^2 \cdot \frac{2}{n} \right)
\]
- Simplify each term:
\[
\sum_{i=1}^{n} \left( \frac{4i}{n^2} - \frac{8i^2}{n^3} \right)
\]
2. **Separate](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb1728920-6e41-44bf-9744-ac0a64f4d19a%2F82a5cd3a-6cc1-4cb6-b238-d85843b14b36%2Fz6x9siq_processed.png&w=3840&q=75)
Transcribed Image Text:**Mathematical Simplification Example**
In this exercise, we aim to simplify a given mathematical expression involving summation notation (Σ). Below is the expression to be simplified:
\[ \text{Simplify } \sum_{i=1}^{n} \left( \frac{2i}{n} - \left( \frac{2i}{n} \right)^2 \right) \cdot \frac{2}{n} \]
### Explanation:
1. **Summation Notation (Σ):**
- The summation notation \(\sum_{i=1}^{n}\) indicates that the expression inside the summation symbol should be summed as \(i\) ranges from 1 to \(n\).
2. **Inside the Summation:**
- The expression inside the summation is \(\left( \frac{2i}{n} - \left( \frac{2i}{n} \right)^2 \right) \cdot \frac{2}{n}\).
3. **Breakdown of the Expression:**
- \(\frac{2i}{n}\) is a general term that depends on the index \(i\).
- \(\left( \frac{2i}{n} \right)^2\) is the square of the term \(\frac{2i}{n}\).
- These are subtracted from each other inside the parentheses.
- The entire expression \(\left( \frac{2i}{n} - \left( \frac{2i}{n} \right)^2 \right)\) is then multiplied by \(\frac{2}{n}\).
### Steps to Simplify:
1. **Combine Like Terms:**
- Distribute \(\frac{2}{n}\) to both terms inside the parentheses:
\[
\sum_{i=1}^{n} \left( \frac{2i}{n} \cdot \frac{2}{n} - \left( \frac{2i}{n} \right)^2 \cdot \frac{2}{n} \right)
\]
- Simplify each term:
\[
\sum_{i=1}^{n} \left( \frac{4i}{n^2} - \frac{8i^2}{n^3} \right)
\]
2. **Separate
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning