Small birds like that in (Eigure 1) can migrate over long distances without feeding. storing energy mostly as fat rather than carbohydrate. Fat is a good form of energy storage because it provides the most energy per unit mass: 1.00 grams of fat provides about 9.40 (food) Calories, compared to 4.20 (food) Calories per 1.00 grams of carbohydrate. Remember that Calories associated with food, which are always capitalized, are not exactly the same as calories used in physics or chemistry, even though they have the same name. More specifically, one food Calorie is equal to 1000 calories of mechanical work or 4184 joules. Therefore, in this problem use the conversion factor 1 Cal - 4184 J. Consider a bird that flies at an average speed of 10.7 m/s and releases energy from its body fat reserves at an average rate of 3.70 W (this rate represents the power consumption of the bird). Assume that the bird consumes 4.00 g of fat to fly over a distance du, without stopping for feeding. How far will the bird fly before feeding again? Express your answer in kilometers. ▸View Available Hint(s) Submit IVE ΑΣΦ ? km

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
**Text Transcription for Educational Website**

---

**Small birds like that in (Figure 1)** can migrate over long distances without feeding, storing energy mostly as fat rather than carbohydrate. Fat is a good form of energy storage because it provides the most energy per unit mass: 1.00 grams of fat provides about 9.40 (food) Calories, compared to 4.20 (food) Calories per 1.00 grams of carbohydrate. Remember that Calories associated with food, which are always capitalized, are not exactly the same calories we use in physics or chemistry, even though they have the same name. More specifically, one food Calorie is equal to 1000 calories of mechanical work or 4184 joules. Therefore, in this problem use the conversion factor 1 Cal = 4184 J.

**Figure 1**

[Image of a small bird, possibly a hummingbird, with vibrant green, red, and gray coloring, mid-flight.]

**Part A**

Consider a bird that flies at an average speed of 10.7 m/s and releases energy from its body fat reserves at an average rate of 3.70 W (this rate represents the power consumption of the bird). Assume that the bird consumes 4.00 g of fat to fly over a distance \(d_b\) without stopping for feeding. How far will the bird fly before feeding again?

Express your answer in kilometers.

\[ d_b =  \]

<button>Submit</button>

**Part B**

How many grams of carbohydrate \(m_{carb}\) would the bird have to consume to travel the same distance \(d_b\)?

Express your answer in grams.

\[ m_{carb} =  \]

<button>Submit</button>
Transcribed Image Text:**Text Transcription for Educational Website** --- **Small birds like that in (Figure 1)** can migrate over long distances without feeding, storing energy mostly as fat rather than carbohydrate. Fat is a good form of energy storage because it provides the most energy per unit mass: 1.00 grams of fat provides about 9.40 (food) Calories, compared to 4.20 (food) Calories per 1.00 grams of carbohydrate. Remember that Calories associated with food, which are always capitalized, are not exactly the same calories we use in physics or chemistry, even though they have the same name. More specifically, one food Calorie is equal to 1000 calories of mechanical work or 4184 joules. Therefore, in this problem use the conversion factor 1 Cal = 4184 J. **Figure 1** [Image of a small bird, possibly a hummingbird, with vibrant green, red, and gray coloring, mid-flight.] **Part A** Consider a bird that flies at an average speed of 10.7 m/s and releases energy from its body fat reserves at an average rate of 3.70 W (this rate represents the power consumption of the bird). Assume that the bird consumes 4.00 g of fat to fly over a distance \(d_b\) without stopping for feeding. How far will the bird fly before feeding again? Express your answer in kilometers. \[ d_b = \] <button>Submit</button> **Part B** How many grams of carbohydrate \(m_{carb}\) would the bird have to consume to travel the same distance \(d_b\)? Express your answer in grams. \[ m_{carb} = \] <button>Submit</button>
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
Ideal Gas law
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON