Sketch the vector field. X 2 0 ० -2 ० y -2 2 ० 0 -4 -3 2 2 -2 N -2 -2 2 -2 -2 X Y F(x, y) = ( − 1 2 ¹ 2) (T, Y) 2' <-1,0> <0,1> <1,0> <0,-1> <-1,1> <1,1> <1,-1> <-1,-1> 3 2 1 -1 -2 -3 1 2 > > > ४४ > > J ४ ४४ 3 O

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question

6.1.1

**Vector Field Exploration**

**Objective:**
Sketch the vector field defined by \(\vec{F}(x, y) = \left\langle -\frac{x}{2}, \frac{y}{2} \right\rangle\).

**Data Table:**

| \(x\)  | \(y\)  | \(\vec{F}(x, y) = \left\langle -\frac{x}{2}, \frac{y}{2} \right\rangle\) | Vector     | Confirmation |
|--------|--------|------------------------------------------------------------------|-------------|--------------|
| 2      | 0      | \(\left\langle -1, 0 \right\rangle\)                             | <1,0>       | ✔️           |
| 0      | 2      | \(\left\langle 0, 1 \right\rangle\)                              | <0,1>       | ✔️           |
| -2     | 0      | \(\left\langle 1, 0 \right\rangle\)                              | <1,0>       | ✔️           |
| 0      | -2     | \(\left\langle 0, -1 \right\rangle\)                             | <0,-1>      | ✔️           |
| 2      | 2      | \(\left\langle -1, 1 \right\rangle\)                             | <1,1>       | ✔️           |
| -2     | 2      | \(\left\langle 1, 1 \right\rangle\)                              | <1,1>       | ✔️           |
| -2     | -2     | \(\left\langle 1, -1 \right\rangle\)                             | <1,-1>      | ✔️           |
| 2      | -2     | \(\left\langle -1, -1 \right\rangle\)                            | <-1,-1>     | ✔️           |

**Graph Explanation:**

The graph is a Cartesian coordinate system ranging from -4 to 4 on both the x-axis and the y-axis, with grid lines at each integer.

You can plot the vectors calculated from the table onto this graph to visualize the behavior of the vector field. Each vector originates at its corresponding (x
Transcribed Image Text:**Vector Field Exploration** **Objective:** Sketch the vector field defined by \(\vec{F}(x, y) = \left\langle -\frac{x}{2}, \frac{y}{2} \right\rangle\). **Data Table:** | \(x\) | \(y\) | \(\vec{F}(x, y) = \left\langle -\frac{x}{2}, \frac{y}{2} \right\rangle\) | Vector | Confirmation | |--------|--------|------------------------------------------------------------------|-------------|--------------| | 2 | 0 | \(\left\langle -1, 0 \right\rangle\) | <1,0> | ✔️ | | 0 | 2 | \(\left\langle 0, 1 \right\rangle\) | <0,1> | ✔️ | | -2 | 0 | \(\left\langle 1, 0 \right\rangle\) | <1,0> | ✔️ | | 0 | -2 | \(\left\langle 0, -1 \right\rangle\) | <0,-1> | ✔️ | | 2 | 2 | \(\left\langle -1, 1 \right\rangle\) | <1,1> | ✔️ | | -2 | 2 | \(\left\langle 1, 1 \right\rangle\) | <1,1> | ✔️ | | -2 | -2 | \(\left\langle 1, -1 \right\rangle\) | <1,-1> | ✔️ | | 2 | -2 | \(\left\langle -1, -1 \right\rangle\) | <-1,-1> | ✔️ | **Graph Explanation:** The graph is a Cartesian coordinate system ranging from -4 to 4 on both the x-axis and the y-axis, with grid lines at each integer. You can plot the vectors calculated from the table onto this graph to visualize the behavior of the vector field. Each vector originates at its corresponding (x
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 8 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,