sin(x - y) sin(x + y) = -tan(y) cos(x + y) + cos(x - y) Use the Addition and Subtraction Formulas, and then simplify. sin(x - y) sin(x + y) cos(x + y) + cos(x - y) (sin(x) cos(y) ) - (sin(x) cos(y) + cos(x) sin(y)) X = (cos(x) cos(y) - sin(x) sin(y)) + (cos(x) cos(y) + sin(x) sin(y)) -2 cos(x) sin(y) 2 cos(x) cos(y) sin (y) X -tan(y) = cos(y)

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
### Proving the Trigonometric Identity

Given the identity:

\[
\frac{\sin(x - y) - \sin(x + y)}{\cos(x + y) + \cos(x - y)} = -\tan(y)
\]

We will use the Addition and Subtraction Formulas to simplify and verify this identity.

#### Step-by-Step Proof:

1. **Write the Expression Using Addition and Subtraction Formulas:**

   \[
   \frac{\sin(x - y) - \sin(x + y)}{\cos(x + y) + \cos(x - y)}
   \]

   Expand using the addition and subtraction formulas:

   \[
   \sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)
   \]
   
   \[
   \sin(x + y) = \sin(x)\cos(y) + \cos(x)\sin(y)
   \]

2. **Substitute the Expanded Forms:**

   \[
   \frac{\left(\sin(x)\cos(y) - \cos(x)\sin(y)\right) - \left(\sin(x)\cos(y) + \cos(x)\sin(y)\right)}{\cos(x + y) + \cos(x - y)}
   \]

3. **Simplify the Numerator:**

   \[
   \frac{\left[\sin(x)\cos(y) - \cos(x)\sin(y)\right] - \left[\sin(x)\cos(y) + \cos(x)\sin(y)\right]}{\cos(x + y) + \cos(x - y)}
   \]

   Distribute the minus sign in the numerator:

   \[
   \frac{\sin(x)\cos(y) - \cos(x)\sin(y) - \sin(x)\cos(y) - \cos(x)\sin(y)}{\cos(x + y) + \cos(x - y)}
   \]

   Combine like terms:

   \[
   \frac{-2\cos(x)\sin(y)}{\cos(x + y) + \cos(x - y)}
   \]

4. **Simplify the Denominator Using Addition and Subtraction Formulas:**

   \[
   \cos(x + y) = \cos(x)\cos(y) - \sin(x)\sin(y)
   \]
   
   \[
   \cos(x - y) = \cos(x)\cos(y) + \
Transcribed Image Text:### Proving the Trigonometric Identity Given the identity: \[ \frac{\sin(x - y) - \sin(x + y)}{\cos(x + y) + \cos(x - y)} = -\tan(y) \] We will use the Addition and Subtraction Formulas to simplify and verify this identity. #### Step-by-Step Proof: 1. **Write the Expression Using Addition and Subtraction Formulas:** \[ \frac{\sin(x - y) - \sin(x + y)}{\cos(x + y) + \cos(x - y)} \] Expand using the addition and subtraction formulas: \[ \sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y) \] \[ \sin(x + y) = \sin(x)\cos(y) + \cos(x)\sin(y) \] 2. **Substitute the Expanded Forms:** \[ \frac{\left(\sin(x)\cos(y) - \cos(x)\sin(y)\right) - \left(\sin(x)\cos(y) + \cos(x)\sin(y)\right)}{\cos(x + y) + \cos(x - y)} \] 3. **Simplify the Numerator:** \[ \frac{\left[\sin(x)\cos(y) - \cos(x)\sin(y)\right] - \left[\sin(x)\cos(y) + \cos(x)\sin(y)\right]}{\cos(x + y) + \cos(x - y)} \] Distribute the minus sign in the numerator: \[ \frac{\sin(x)\cos(y) - \cos(x)\sin(y) - \sin(x)\cos(y) - \cos(x)\sin(y)}{\cos(x + y) + \cos(x - y)} \] Combine like terms: \[ \frac{-2\cos(x)\sin(y)}{\cos(x + y) + \cos(x - y)} \] 4. **Simplify the Denominator Using Addition and Subtraction Formulas:** \[ \cos(x + y) = \cos(x)\cos(y) - \sin(x)\sin(y) \] \[ \cos(x - y) = \cos(x)\cos(y) + \
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning