sin(x? + y°) dædy. 2. Use polar coordinates to evaluate the double integral Answer. [1- cos(4)].

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem 2:** Use polar coordinates to evaluate the double integral 

\[
\int_{0}^{2} \int_{0}^{\sqrt{4-y^2}} \sin(x^2 + y^2) \, dx \, dy.
\]

**Answer:**

\[
\frac{\pi}{4} [1 - \cos(4)].
\]

**Explanation:**

The problem involves evaluating a double integral using polar coordinates. The function inside the integral, \(\sin(x^2 + y^2)\), suggests a natural transformation to polar coordinates since \(x^2 + y^2 = r^2\) in polar terms.

1. **Conversion to Polar Coordinates:**
   - \(x = r \cos \theta\)
   - \(y = r \sin \theta\)
   - \(dx \, dy = r \, dr \, d\theta\)

2. **Limits of Integration:**
   - The given limits for \(x\) and \(y\) define a region in the first quadrant of the unit circle with radius 2.
   - Thus, \(r\) ranges from 0 to 2, and \(\theta\) ranges from 0 to \(\pi/2\).

3. **Transformed Integral:**
   - Replace \(x^2 + y^2\) with \(r^2\), and the integral becomes:
   \[
   \int_{0}^{\pi/2} \int_{0}^{2} \sin(r^2) \, r \, dr \, d\theta.
   \]

4. **Calculation:**
   - Integrate with respect to \(r\) first and then with respect to \(\theta\).

The final calculation yields:

\[
\frac{\pi}{4} [1 - \cos(4)],
\]

as the result of the original double integral problem.
Transcribed Image Text:**Problem 2:** Use polar coordinates to evaluate the double integral \[ \int_{0}^{2} \int_{0}^{\sqrt{4-y^2}} \sin(x^2 + y^2) \, dx \, dy. \] **Answer:** \[ \frac{\pi}{4} [1 - \cos(4)]. \] **Explanation:** The problem involves evaluating a double integral using polar coordinates. The function inside the integral, \(\sin(x^2 + y^2)\), suggests a natural transformation to polar coordinates since \(x^2 + y^2 = r^2\) in polar terms. 1. **Conversion to Polar Coordinates:** - \(x = r \cos \theta\) - \(y = r \sin \theta\) - \(dx \, dy = r \, dr \, d\theta\) 2. **Limits of Integration:** - The given limits for \(x\) and \(y\) define a region in the first quadrant of the unit circle with radius 2. - Thus, \(r\) ranges from 0 to 2, and \(\theta\) ranges from 0 to \(\pi/2\). 3. **Transformed Integral:** - Replace \(x^2 + y^2\) with \(r^2\), and the integral becomes: \[ \int_{0}^{\pi/2} \int_{0}^{2} \sin(r^2) \, r \, dr \, d\theta. \] 4. **Calculation:** - Integrate with respect to \(r\) first and then with respect to \(\theta\). The final calculation yields: \[ \frac{\pi}{4} [1 - \cos(4)], \] as the result of the original double integral problem.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning