Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Topic Video
Question
![**Problem Statement:**
Given the function \( f(x) = \int_{-3}^{\sin x} e^{t^2} \, dt \), determine \( f'(x) \).
**Explanation:**
In this problem, we are given a function \( f(x) \) which is defined as an integral with variable upper limit \(\sin x\). To find the derivative \( f'(x) \), we can use the Fundamental Theorem of Calculus, particularly the Leibniz rule for differentiation under the integral sign when the limits depend on \( x \).
**Fundamental Theorem of Calculus:**
If \( F(u) = \int_{a}^{u} g(t) \, dt \), then \( \frac{d}{du} F(u) = g(u) \).
**Applying the Chain Rule:**
Since the upper limit \( \sin x \) depends on \( x \), the chain rule needs to be applied. Let \( u = \sin x \), thus:
\[ f(x) = F(\sin x) \quad \text{where} \quad F(u) = \int_{-3}^{u} e^{t^2} \, dt. \]
Taking the derivative, we get:
\[ f'(x) = \frac{d}{dx}\left( F(\sin x) \right). \]
Using the chain rule:
\[ f'(x) = F'(\sin x) \cdot \frac{d}{dx} (\sin x). \]
From the Fundamental Theorem of Calculus:
\[ F'(u) = e^{u^2}. \]
Therefore:
\[ F'(\sin x) = e^{(\sin x)^2}. \]
And since:
\[ \frac{d}{dx} (\sin x) = \cos x, \]
we have:
\[ f'(x) = e^{(\sin x)^2} \cdot \cos x. \]
So, by applying these rules, we find:
\[ f'(x) = e^{(\sin x)^2} \cos x. \]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F445ea119-0d18-4a53-ba26-7aa1240bc7dc%2Ffc0ddc7f-dffb-47b7-8db0-254681cd56a9%2Fwcaqzko_processed.png&w=3840&q=75)
Transcribed Image Text:**Problem Statement:**
Given the function \( f(x) = \int_{-3}^{\sin x} e^{t^2} \, dt \), determine \( f'(x) \).
**Explanation:**
In this problem, we are given a function \( f(x) \) which is defined as an integral with variable upper limit \(\sin x\). To find the derivative \( f'(x) \), we can use the Fundamental Theorem of Calculus, particularly the Leibniz rule for differentiation under the integral sign when the limits depend on \( x \).
**Fundamental Theorem of Calculus:**
If \( F(u) = \int_{a}^{u} g(t) \, dt \), then \( \frac{d}{du} F(u) = g(u) \).
**Applying the Chain Rule:**
Since the upper limit \( \sin x \) depends on \( x \), the chain rule needs to be applied. Let \( u = \sin x \), thus:
\[ f(x) = F(\sin x) \quad \text{where} \quad F(u) = \int_{-3}^{u} e^{t^2} \, dt. \]
Taking the derivative, we get:
\[ f'(x) = \frac{d}{dx}\left( F(\sin x) \right). \]
Using the chain rule:
\[ f'(x) = F'(\sin x) \cdot \frac{d}{dx} (\sin x). \]
From the Fundamental Theorem of Calculus:
\[ F'(u) = e^{u^2}. \]
Therefore:
\[ F'(\sin x) = e^{(\sin x)^2}. \]
And since:
\[ \frac{d}{dx} (\sin x) = \cos x, \]
we have:
\[ f'(x) = e^{(\sin x)^2} \cdot \cos x. \]
So, by applying these rules, we find:
\[ f'(x) = e^{(\sin x)^2} \cos x. \]
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning