Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
100%
![### Expressing Trigonometric Products as Sums or Differences
In this exercise, we are tasked with expressing the given trigonometric product as a sum or difference that contains only sines or cosines.
The given expression is:
\[ \sin(9x) \sin(3x) \]
To find the solution, we use product-to-sum identities for trigonometric functions. Specifically, for sine functions, the identity is:
\[ \sin(A)\sin(B) = \frac{1}{2} [\cos(A - B) - \cos(A + B)] \]
By applying this identity, we can simplify our expression:
\[ \sin(9x) \sin(3x) = \frac{1}{2} [\cos(9x - 3x) - \cos(9x + 3x)] \]
Simplify inside the cosine functions:
\[ \cos(9x - 3x) = \cos(6x) \]
\[ \cos(9x + 3x) = \cos(12x) \]
Therefore, the expression simplifies to:
\[ \sin(9x) \sin(3x) = \frac{1}{2} [\cos(6x) - \cos(12x)] \]
#### Final Answer:
\[ \sin(9x) \sin(3x) = \frac{1}{2} [\cos(6x) - \cos(12x)] \]
Now you can use this simplified expression in further calculations or analyses.
(Simplify your answer.)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc87a9968-3e16-4a34-a66a-7e5dcd8bf48b%2F7356b084-561c-4bf2-bca7-1233d35fd26e%2Fx4ohrlv.jpeg&w=3840&q=75)
Transcribed Image Text:### Expressing Trigonometric Products as Sums or Differences
In this exercise, we are tasked with expressing the given trigonometric product as a sum or difference that contains only sines or cosines.
The given expression is:
\[ \sin(9x) \sin(3x) \]
To find the solution, we use product-to-sum identities for trigonometric functions. Specifically, for sine functions, the identity is:
\[ \sin(A)\sin(B) = \frac{1}{2} [\cos(A - B) - \cos(A + B)] \]
By applying this identity, we can simplify our expression:
\[ \sin(9x) \sin(3x) = \frac{1}{2} [\cos(9x - 3x) - \cos(9x + 3x)] \]
Simplify inside the cosine functions:
\[ \cos(9x - 3x) = \cos(6x) \]
\[ \cos(9x + 3x) = \cos(12x) \]
Therefore, the expression simplifies to:
\[ \sin(9x) \sin(3x) = \frac{1}{2} [\cos(6x) - \cos(12x)] \]
#### Final Answer:
\[ \sin(9x) \sin(3x) = \frac{1}{2} [\cos(6x) - \cos(12x)] \]
Now you can use this simplified expression in further calculations or analyses.
(Simplify your answer.)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning