sin 0 = cos 0 = tan 8 = y 8 6 4 2 0 2 6 8 X Sin , cos , and tan 8.

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
### Trigonometric Values in Standard Position

In the following diagram, angle \( \theta \) is in standard position. In each case, find \( \sin \theta \), \( \cos \theta \), and \( \tan \theta \).

**sin \( \theta \) =**
[Text Box]

**cos \( \theta \) =**
[Text Box]

**tan \( \theta \) =**
[Text Box]

---

### Diagram Explanation:

#### Graph Description:

- **Axes**:
  - The \( y \)-axis is vertical and extends from 0 to 8.
  - The \( x \)-axis is horizontal and extends from 0 to 8.
  
- **Line**:
  - A red line originates from the origin (0,0) and extends into the first quadrant, ending at the point (4,8).
  - This line represents the terminal side of the angle \( \theta \).

- **Angle**:
  - The angle \( \theta \) is formed between the positive \( x \)-axis and the red line.

### Finding Trigonometric Values:

To find \( \sin \theta \), \( \cos \theta \), and \( \tan \theta \):

1. **Calculate the hypotenuse**:
   - Using the Pythagorean theorem: \( \text{hypotenuse} = \sqrt{x^2 + y^2} \)
   - Here, \( x = 4 \) and \( y = 8 \), so:
     \[
     \text{hypotenuse} = \sqrt{4^2 + 8^2} = \sqrt{16 + 64} = \sqrt{80} = 4\sqrt{5}
     \]

2. **Calculate \( \sin \theta \)**:
   \[
   \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{8}{4\sqrt{5}} = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}
   \]

3. **Calculate \( \cos \theta \)**:
   \[
   \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{4}{4\sqrt{5}} = \frac{1}{\sqrt{5
Transcribed Image Text:### Trigonometric Values in Standard Position In the following diagram, angle \( \theta \) is in standard position. In each case, find \( \sin \theta \), \( \cos \theta \), and \( \tan \theta \). **sin \( \theta \) =** [Text Box] **cos \( \theta \) =** [Text Box] **tan \( \theta \) =** [Text Box] --- ### Diagram Explanation: #### Graph Description: - **Axes**: - The \( y \)-axis is vertical and extends from 0 to 8. - The \( x \)-axis is horizontal and extends from 0 to 8. - **Line**: - A red line originates from the origin (0,0) and extends into the first quadrant, ending at the point (4,8). - This line represents the terminal side of the angle \( \theta \). - **Angle**: - The angle \( \theta \) is formed between the positive \( x \)-axis and the red line. ### Finding Trigonometric Values: To find \( \sin \theta \), \( \cos \theta \), and \( \tan \theta \): 1. **Calculate the hypotenuse**: - Using the Pythagorean theorem: \( \text{hypotenuse} = \sqrt{x^2 + y^2} \) - Here, \( x = 4 \) and \( y = 8 \), so: \[ \text{hypotenuse} = \sqrt{4^2 + 8^2} = \sqrt{16 + 64} = \sqrt{80} = 4\sqrt{5} \] 2. **Calculate \( \sin \theta \)**: \[ \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{8}{4\sqrt{5}} = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5} \] 3. **Calculate \( \cos \theta \)**: \[ \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{4}{4\sqrt{5}} = \frac{1}{\sqrt{5
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning