Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![### Simplification of Vector Expression
#### Problem Statement:
Simplify the following expression given that the magnitudes of vectors \( \mathbf{v} \) and \( \mathbf{w} \) are both 12:
\[ \|\mathbf{v}\| = 12 \quad \text{and} \quad \|\mathbf{w}\| = 12 \]
Given Expression:
\[ (\mathbf{v} + \mathbf{w}) \cdot (\mathbf{v} + \mathbf{w}) - 2 \mathbf{v} \cdot \mathbf{w} \]
#### Explanation:
Here is the step-by-step process to simplify the given expression:
1. **Expand the dot product:**
\[ (\mathbf{v} + \mathbf{w}) \cdot (\mathbf{v} + \mathbf{w}) \]
Using the distributive property of the dot product, we get:
\[ = \mathbf{v} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{w} + \mathbf{w} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{w} \]
Since the dot product is commutative (\( \mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v} \)):
\[ = \mathbf{v} \cdot \mathbf{v} + 2(\mathbf{v} \cdot \mathbf{w}) + \mathbf{w} \cdot \mathbf{w} \]
2. **Include the second part of the original expression:**
We subtract \( 2 \mathbf{v} \cdot \mathbf{w} \) from the expression obtained above:
\[ \mathbf{v} \cdot \mathbf{v} + 2(\mathbf{v} \cdot \mathbf{w}) + \mathbf{w} \cdot \mathbf{w} - 2 \mathbf{v} \cdot \mathbf{w} \]
Simplifying this further:
\[ = \mathbf{v} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{w} \]
3. **Substitute the magnitudes:**](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc3d3bee5-0c39-4b7b-a553-642953afa184%2Fc45d95ce-5cc6-420f-b0df-ad9c0c23f261%2F9jb9f18.png&w=3840&q=75)
Transcribed Image Text:### Simplification of Vector Expression
#### Problem Statement:
Simplify the following expression given that the magnitudes of vectors \( \mathbf{v} \) and \( \mathbf{w} \) are both 12:
\[ \|\mathbf{v}\| = 12 \quad \text{and} \quad \|\mathbf{w}\| = 12 \]
Given Expression:
\[ (\mathbf{v} + \mathbf{w}) \cdot (\mathbf{v} + \mathbf{w}) - 2 \mathbf{v} \cdot \mathbf{w} \]
#### Explanation:
Here is the step-by-step process to simplify the given expression:
1. **Expand the dot product:**
\[ (\mathbf{v} + \mathbf{w}) \cdot (\mathbf{v} + \mathbf{w}) \]
Using the distributive property of the dot product, we get:
\[ = \mathbf{v} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{w} + \mathbf{w} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{w} \]
Since the dot product is commutative (\( \mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v} \)):
\[ = \mathbf{v} \cdot \mathbf{v} + 2(\mathbf{v} \cdot \mathbf{w}) + \mathbf{w} \cdot \mathbf{w} \]
2. **Include the second part of the original expression:**
We subtract \( 2 \mathbf{v} \cdot \mathbf{w} \) from the expression obtained above:
\[ \mathbf{v} \cdot \mathbf{v} + 2(\mathbf{v} \cdot \mathbf{w}) + \mathbf{w} \cdot \mathbf{w} - 2 \mathbf{v} \cdot \mathbf{w} \]
Simplifying this further:
\[ = \mathbf{v} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{w} \]
3. **Substitute the magnitudes:**
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning