Simplify and enter your final answer. * T/6 (sec t tan t)i + (tan t)j + (2 sin t cos t)k dt = Your answer cannot be understood or graded. More Information

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
## Find the Indefinite Integral

### Problem:
Find the indefinite integral:
\[
\int_{0}^{\pi/6} \left( (\sec t \tan t) \mathbf{i} + (\tan t) \mathbf{j} + (2 \sin t \cos t) \mathbf{k} \right) \, dt
\]

### Part 1 of 3:
Integrate the given integral with respect to \( t \) on a component-by-component basis.

- \[
\int_{0}^{\pi/6} \left( (\sec t \tan t) \mathbf{i} + (\tan t) \mathbf{j} + (2 \sin t \cos t) \mathbf{k} \right) \, dt
\]

Breaking down the components:
1. \[
\int_{0}^{\pi/6} (\sec t \tan t) \, dt \, \mathbf{i} = \left[\sec(t)\right]_{0}^{\pi/6} \mathbf{i}
\]
2. \[
\int_{0}^{\pi/6} (\tan t) \, dt \, \mathbf{j} = \left[ \ln|\sec(t)|\right]_{0}^{\pi/6} \mathbf{j}
\]
3. \[
\int_{0}^{\pi/6} (2 \sin t \cos t) \, dt \, \mathbf{k} = \left[ \sin^2(t)\right]_{0}^{\pi/6} \mathbf{k}
\]

**Components:**
- \(\sec(t)\) evaluated from 0 to \(\pi/6\)
- \(\ln|\sec(t)|\) evaluated from 0 to \(\pi/6\)
- \(\sin^2(t)\) evaluated from 0 to \(\pi/6\)

### Part 2 of 3:
Evaluate the expressions.

- \[
\left( \sec \frac{\pi}{6} - \sec 0 \right)\mathbf{i} + \left( \ln \sec \frac{\pi}{6} - \ln \sec 0 \right)\mathbf{j} + (\sin^2 \frac{\pi}{6} - \sin^2 0)\mathbf{k}
\]

Calculations:
- \(\frac{
Transcribed Image Text:## Find the Indefinite Integral ### Problem: Find the indefinite integral: \[ \int_{0}^{\pi/6} \left( (\sec t \tan t) \mathbf{i} + (\tan t) \mathbf{j} + (2 \sin t \cos t) \mathbf{k} \right) \, dt \] ### Part 1 of 3: Integrate the given integral with respect to \( t \) on a component-by-component basis. - \[ \int_{0}^{\pi/6} \left( (\sec t \tan t) \mathbf{i} + (\tan t) \mathbf{j} + (2 \sin t \cos t) \mathbf{k} \right) \, dt \] Breaking down the components: 1. \[ \int_{0}^{\pi/6} (\sec t \tan t) \, dt \, \mathbf{i} = \left[\sec(t)\right]_{0}^{\pi/6} \mathbf{i} \] 2. \[ \int_{0}^{\pi/6} (\tan t) \, dt \, \mathbf{j} = \left[ \ln|\sec(t)|\right]_{0}^{\pi/6} \mathbf{j} \] 3. \[ \int_{0}^{\pi/6} (2 \sin t \cos t) \, dt \, \mathbf{k} = \left[ \sin^2(t)\right]_{0}^{\pi/6} \mathbf{k} \] **Components:** - \(\sec(t)\) evaluated from 0 to \(\pi/6\) - \(\ln|\sec(t)|\) evaluated from 0 to \(\pi/6\) - \(\sin^2(t)\) evaluated from 0 to \(\pi/6\) ### Part 2 of 3: Evaluate the expressions. - \[ \left( \sec \frac{\pi}{6} - \sec 0 \right)\mathbf{i} + \left( \ln \sec \frac{\pi}{6} - \ln \sec 0 \right)\mathbf{j} + (\sin^2 \frac{\pi}{6} - \sin^2 0)\mathbf{k} \] Calculations: - \(\frac{
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning