Shown below are the number of trials and success probability for some Bernoulli trials. Let X denote the total number of successes. n= 4 and p = 0.25 a. Determine P(X=2) using the binomial probability formula. b. Determine P(X=2) using a table of binomial probabilities. Compare this answer to part (a). Click here for the binomial probability table. a. Using the binomial formula, P(X=2) is. (Round to three decimal places as needed.) b. Using the binomial probability table, P(X= 2) is (Round to three decimal places as needed.) Compare this result to the probability found in part (a). Choose the correct answer below. O A. The probability from part (b) is much larger than the probability from part (a). OB. The probability from part (a) is much larger than the probability from part (b). OC. The two probabilities are approximately equal at 3 decimal places. O D. The two probabilities are exactly equal at 3 decimal places.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Topic Video
Question
14
Shown below are the number of trials and success probability for some Bernoulli trials. Let X denote the total number of successes.
n=4 and p = 0.25
a. Determine P(X=2) using the binomial probability formula.
b. Determine P(X=2) using a table of binomial probabilities. Compare this answer to part (a).
Click here for the binomial probability table.
a. Using the binomial formula, P(X=2) is.
(Round to three decimal places as needed.)
b. Using the binomial probability table, P(X= 2) is
(Round to three decimal places as needed.)
Compare this result to the probability found in part (a). Choose the correct answer below.
O A. The probability from part (b) is much larger than the probability from part (a).
O B. The probability from part (a) is much larger than the probability from part (b).
OC. The two probabilities are approximately equal at 3 decimal places.
O D. The two probabilities are exactly equal at 3 decimal places.
Click to select your answer(s).
Transcribed Image Text:Shown below are the number of trials and success probability for some Bernoulli trials. Let X denote the total number of successes. n=4 and p = 0.25 a. Determine P(X=2) using the binomial probability formula. b. Determine P(X=2) using a table of binomial probabilities. Compare this answer to part (a). Click here for the binomial probability table. a. Using the binomial formula, P(X=2) is. (Round to three decimal places as needed.) b. Using the binomial probability table, P(X= 2) is (Round to three decimal places as needed.) Compare this result to the probability found in part (a). Choose the correct answer below. O A. The probability from part (b) is much larger than the probability from part (a). O B. The probability from part (a) is much larger than the probability from part (b). OC. The two probabilities are approximately equal at 3 decimal places. O D. The two probabilities are exactly equal at 3 decimal places. Click to select your answer(s).
Binomial probabilities for values of n, x, and p
0.1
0.2
0.25
0.3
0.4
0.5
0.6
0.7
0.75
0.8
0.9
0.900 0.800 0.750 0.700 0.600 0.500 0.400 0.300 0.250 0.200 0.100
0.100 0.200 0.250 0.300 0.400 0.500 0.600 0.700 0.750 0.800 0.900
2 0
0.810 0.640 0.563 0.490 0.360 0.250 0.160 0.090 0.063 0.040. 0.010
0.180 0.320 0.375 0.420 0.480 0.500 0.480 0.420 0.375 0.320 0.180
0.010 0.040 0.063 0.090 0.160 0.250 0.360 0.490 0.563 0.640 0.810
0.729 0.512 0.422 0.343 0.216 0.125 0.064 0.027 0.016 0.008 0.001
0.243 0.384 0.422 0.441 0.432 0.375 0.288 0.189 0.141 0.096 0.027
0.027 0.096 0.141 0.189 0.288 0.375 0.432 0.441 0.422 0.384 0.243
0.
ect
3
0.001 0.008 0.016 0.027 0.064 0.125 0.216 0.343 0.422 0.512 0.729
fro
0.656 0.410 0.316 0.240 0.130 0.063 0.026 0.008 0.004 0.002 0.000
0.292 0.410 0.422 0.412 0.346 0.250 0.154 0.076 0.047 0.026 0.004
0.049 0.154 0.211 0.265 0.346 0.375 0.346 0.265 0.211 0.154 0.049
0.004 0.026 0.047 0.076 0.154 0.250 0.346 0.412 0.422 0.410 0.292
0.000 0.002 0.004 0.008 0.026 0.063 0.130 0.240 0.316 0.410 0.656
4.
y fro
aces.
3
4.
0.590 0.328 0.237 0.168 0.078 0.031 0.010 0.002 0.001 0.000 0.000
0.328 0.410 0.396 0.360 0.259 0.156 0.077 0.028 0.015 0.006 0.000
0.073 0.205 0.264 0.309 0.346 0.312 0.230 0.132 0.088 0.051 0.008
0.008 0.051 0.088 0.132 0.230 0.312 0.346 0.309 0.264 0.205 0.073
0.000 0.006 0.015 0.028 0.077 0.156 0.259 0.360 0.396 0.410 0.328
0.000 0.000 0.001 0.002 0.010 0.031 0.078 0.168 0.237 0.328 0.590
5.
3.
4.
0.531 0.262 0.178 0.118 0.047 0.016 0.004 0.001 0.000 0.000 0.000
0.354 0.393 0.356 0.303 0.187 0.094 0.037 0.010 0.004 0.002 0.000
0.098 0.246 0.297 0.324 0.311 0.234 0.138 0.060 0.033 0.015 0.001
0.015 0.082 0.132 0.185 0.276 0.313 0.276 0.185 0.132 0.082 0.015
0.001 0.015 0.033 0.060 0.138 0.234 0.311 0.324 0.297 0.246 0.098
0.000 0.002 0.004 0.010 0.037 0.094 0.187 0.303 0.356 0.393 0.354
0.000 0.000 0.000 0.001 0.004 0.016 0.047 0.118 0.178 0.262 0531
6.
Print
Done
Transcribed Image Text:Binomial probabilities for values of n, x, and p 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 0.900 0.800 0.750 0.700 0.600 0.500 0.400 0.300 0.250 0.200 0.100 0.100 0.200 0.250 0.300 0.400 0.500 0.600 0.700 0.750 0.800 0.900 2 0 0.810 0.640 0.563 0.490 0.360 0.250 0.160 0.090 0.063 0.040. 0.010 0.180 0.320 0.375 0.420 0.480 0.500 0.480 0.420 0.375 0.320 0.180 0.010 0.040 0.063 0.090 0.160 0.250 0.360 0.490 0.563 0.640 0.810 0.729 0.512 0.422 0.343 0.216 0.125 0.064 0.027 0.016 0.008 0.001 0.243 0.384 0.422 0.441 0.432 0.375 0.288 0.189 0.141 0.096 0.027 0.027 0.096 0.141 0.189 0.288 0.375 0.432 0.441 0.422 0.384 0.243 0. ect 3 0.001 0.008 0.016 0.027 0.064 0.125 0.216 0.343 0.422 0.512 0.729 fro 0.656 0.410 0.316 0.240 0.130 0.063 0.026 0.008 0.004 0.002 0.000 0.292 0.410 0.422 0.412 0.346 0.250 0.154 0.076 0.047 0.026 0.004 0.049 0.154 0.211 0.265 0.346 0.375 0.346 0.265 0.211 0.154 0.049 0.004 0.026 0.047 0.076 0.154 0.250 0.346 0.412 0.422 0.410 0.292 0.000 0.002 0.004 0.008 0.026 0.063 0.130 0.240 0.316 0.410 0.656 4. y fro aces. 3 4. 0.590 0.328 0.237 0.168 0.078 0.031 0.010 0.002 0.001 0.000 0.000 0.328 0.410 0.396 0.360 0.259 0.156 0.077 0.028 0.015 0.006 0.000 0.073 0.205 0.264 0.309 0.346 0.312 0.230 0.132 0.088 0.051 0.008 0.008 0.051 0.088 0.132 0.230 0.312 0.346 0.309 0.264 0.205 0.073 0.000 0.006 0.015 0.028 0.077 0.156 0.259 0.360 0.396 0.410 0.328 0.000 0.000 0.001 0.002 0.010 0.031 0.078 0.168 0.237 0.328 0.590 5. 3. 4. 0.531 0.262 0.178 0.118 0.047 0.016 0.004 0.001 0.000 0.000 0.000 0.354 0.393 0.356 0.303 0.187 0.094 0.037 0.010 0.004 0.002 0.000 0.098 0.246 0.297 0.324 0.311 0.234 0.138 0.060 0.033 0.015 0.001 0.015 0.082 0.132 0.185 0.276 0.313 0.276 0.185 0.132 0.082 0.015 0.001 0.015 0.033 0.060 0.138 0.234 0.311 0.324 0.297 0.246 0.098 0.000 0.002 0.004 0.010 0.037 0.094 0.187 0.303 0.356 0.393 0.354 0.000 0.000 0.000 0.001 0.004 0.016 0.047 0.118 0.178 0.262 0531 6. Print Done
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Discrete Probability Distributions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman