Shown below are the number of trials and success probability for some Bernoulli trials. Let X denote the total number of successes.   n=4 and p=0.25   a. Determine ​P(X=2​) using the binomial probability formula. b. Determine ​P(X=2​) using a table of binomial probabilities. Compare this answer to part​ (a).   a. Using the binomial​ formula, P(X=2​) is ____________. ​(Round to three decimal places as​ needed.)   b. Using the binomial probability​ table, P(X=2​) is _______. ​(Round to three decimal places as​ needed.)   Compare this result to the probability found in part​ (a). Choose the correct answer below.   A.The two probabilities are exactly equal at 3 decimal places. B.The two probabilities are approximately equal at 3 decimal places. C.The probability from part​ (a) is much larger than the probability from part​ (b). D.The probability from part​ (b) is much larger than the probability from part​ (a

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Topic Video
Question
Shown below are the number of trials and success probability for some Bernoulli trials. Let X denote the total number of successes.
 
n=4 and p=0.25
 
a. Determine ​P(X=2​) using the binomial probability formula.
b. Determine ​P(X=2​) using a table of binomial probabilities. Compare this answer to part​ (a).
 
a. Using the binomial​ formula, P(X=2​) is ____________.
​(Round to three decimal places as​ needed.)
 
b. Using the binomial probability​ table, P(X=2​) is _______.
​(Round to three decimal places as​ needed.)
 
Compare this result to the probability found in part​ (a). Choose the correct answer below.
 
A.The two probabilities are exactly equal at 3 decimal places.
B.The two probabilities are approximately equal at 3 decimal places.
C.The probability from part​ (a) is much larger than the probability from part​ (b).
D.The probability from part​ (b) is much larger than the probability from part​ (a).
0.2
0.25
0.3
0.4
0.5
0.6
0.7
0.75
0.8
0.9
0.900 0.800 0.750 0.700 0.600 0.500 0400 0.300 0.250 0.200 0.100
0,100 0.200 0.250 0.300 0.400 0.500 0,600 0.700 0.750 0.800 0.900
2 0
0.8 10 0.640 0.563 0.490 0.360 0.250 0.160 0.090 0.063 0.040 0.010
0.180 0.320 0.375 0.420 0.480 0500 0.480 0.420 0.375 0.320 0.180
0.010 0.040 0.063 0.090 0.160 0.250 0.360 0.490 0563 0.640 0.810
2
3 0
0.729 0.512 0.422 0.343 0.216 0.125 0.064 0.027 0.016 0.008 0.001
0.243 0.384 0.422 0.441 0.432 0.375 0.288 0.189 0.141 0.096 0.027
0.027 0.096 0.141 0.189 0.288 0.375 0,432 0441 0422 0.384 0.243
3
0.001 0.008 0.016 0.027 0.064 0.125 0.216 0343 0422 0.512 0.729
4 0
0.656 0.4 10 0.316 0.240 0.130 0.063 0.026 0.008 0.004 0.002 0.000
0.292 0.410 0.422 0.412 0.346 0.250 0.154 0.076 0,047 0.026 0.004
0.049 0.154 0.211 0.265 0.346 0.375 0.346 0265 0.211 0.154 0.049
3
0.004 0.026 0.047 0.076 0.154 0.250 0.346 0.412 0422 0.410 0.292
4
0.000 0.002 0.004 0.008 0D26 0.063 0.130 0240 0316 0.410 0.656
5 0
0.590 0.328 0.237 0.168 0.078 0031 0.010 0.002 0.001 0.000 0.000
0.328 0.410 0.396 0.360 0.259 0.156 0.07T7 0.028 0015 0.006 0.000
0.073 0.205 0.264 0.309 0346 0.312 0.230 0.132 0.088 0.051 0.008
3
0.008 0.031 0.088 0.132 0.230 0.312 0.346 0309 0.264 0.205 0.073
0.000 0.006 0.015 0.028 0.077 0.156 0.259 0.360 0.396 0410 0.328
4
5
0.000 0.000 0.001 0.002 0.010 0.031 0.078 0.168 0.237 0.328 0.590
6 0
0.531 0.262 0.178 0.118 0.047 0.016 0.004 0.001 0.000 0.000 0.000
0.354 0.393 0.356 0.303 0.187 0.094 0.037 0.010 0.004 0.002 0.000
0.098 0.246 0.297 0.324 03|| 0.234 0.138 0060 0033 0015 0.001
0,015 0.082 0.132 0.185 0.276 0313 0.276 0.183 0.132 0.082 0015
0.001 0.015 0.033 0.060 0.138 0.234 0.311 0.324 0.297 0.246 0.098
0.000 0.002 0.004 0.010 0.037 0.094 0.187 0.303 0.356 0.393 0.354
0.000 0.000 0.000 0.001 0.004 0.016 0.047 0.118 0.178 0.262 0.531
2
3
4
7 0
0.478 0.210 0.133 0.082 0.028 0.008 0.002 0.000 0.000 0.000 0.000
0.372 0.367 0.311 0.247 0.131 0.055 0.017 0.004 0.001 0.000 0.000
0.124 0.275 0.311 0.318 0.261 0.164 0.07n 0025 0012 0001 0000
3
0.023 0.115 0.173 0.227 0.290 0.273 0.194 0.097 0058 0.029 0003
0,003 0.029 0.058 0.097 0.194 0.273 0.290 0227 0.173 0.115 0.023
0.000 0.004 0.012 0.025 0.077 0.164 0.261 0318 0.311 0.275 0.124
0.000 0.000 0.001 0.004 0.D17 0.055 0.131 0247 0.311 0.367 0.372
0.000 0.000 0.000 0.000 0002 0.008 0.028 0.082 0.133 0.210 0.478
4
Transcribed Image Text:0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 0.900 0.800 0.750 0.700 0.600 0.500 0400 0.300 0.250 0.200 0.100 0,100 0.200 0.250 0.300 0.400 0.500 0,600 0.700 0.750 0.800 0.900 2 0 0.8 10 0.640 0.563 0.490 0.360 0.250 0.160 0.090 0.063 0.040 0.010 0.180 0.320 0.375 0.420 0.480 0500 0.480 0.420 0.375 0.320 0.180 0.010 0.040 0.063 0.090 0.160 0.250 0.360 0.490 0563 0.640 0.810 2 3 0 0.729 0.512 0.422 0.343 0.216 0.125 0.064 0.027 0.016 0.008 0.001 0.243 0.384 0.422 0.441 0.432 0.375 0.288 0.189 0.141 0.096 0.027 0.027 0.096 0.141 0.189 0.288 0.375 0,432 0441 0422 0.384 0.243 3 0.001 0.008 0.016 0.027 0.064 0.125 0.216 0343 0422 0.512 0.729 4 0 0.656 0.4 10 0.316 0.240 0.130 0.063 0.026 0.008 0.004 0.002 0.000 0.292 0.410 0.422 0.412 0.346 0.250 0.154 0.076 0,047 0.026 0.004 0.049 0.154 0.211 0.265 0.346 0.375 0.346 0265 0.211 0.154 0.049 3 0.004 0.026 0.047 0.076 0.154 0.250 0.346 0.412 0422 0.410 0.292 4 0.000 0.002 0.004 0.008 0D26 0.063 0.130 0240 0316 0.410 0.656 5 0 0.590 0.328 0.237 0.168 0.078 0031 0.010 0.002 0.001 0.000 0.000 0.328 0.410 0.396 0.360 0.259 0.156 0.07T7 0.028 0015 0.006 0.000 0.073 0.205 0.264 0.309 0346 0.312 0.230 0.132 0.088 0.051 0.008 3 0.008 0.031 0.088 0.132 0.230 0.312 0.346 0309 0.264 0.205 0.073 0.000 0.006 0.015 0.028 0.077 0.156 0.259 0.360 0.396 0410 0.328 4 5 0.000 0.000 0.001 0.002 0.010 0.031 0.078 0.168 0.237 0.328 0.590 6 0 0.531 0.262 0.178 0.118 0.047 0.016 0.004 0.001 0.000 0.000 0.000 0.354 0.393 0.356 0.303 0.187 0.094 0.037 0.010 0.004 0.002 0.000 0.098 0.246 0.297 0.324 03|| 0.234 0.138 0060 0033 0015 0.001 0,015 0.082 0.132 0.185 0.276 0313 0.276 0.183 0.132 0.082 0015 0.001 0.015 0.033 0.060 0.138 0.234 0.311 0.324 0.297 0.246 0.098 0.000 0.002 0.004 0.010 0.037 0.094 0.187 0.303 0.356 0.393 0.354 0.000 0.000 0.000 0.001 0.004 0.016 0.047 0.118 0.178 0.262 0.531 2 3 4 7 0 0.478 0.210 0.133 0.082 0.028 0.008 0.002 0.000 0.000 0.000 0.000 0.372 0.367 0.311 0.247 0.131 0.055 0.017 0.004 0.001 0.000 0.000 0.124 0.275 0.311 0.318 0.261 0.164 0.07n 0025 0012 0001 0000 3 0.023 0.115 0.173 0.227 0.290 0.273 0.194 0.097 0058 0.029 0003 0,003 0.029 0.058 0.097 0.194 0.273 0.290 0227 0.173 0.115 0.023 0.000 0.004 0.012 0.025 0.077 0.164 0.261 0318 0.311 0.275 0.124 0.000 0.000 0.001 0.004 0.D17 0.055 0.131 0247 0.311 0.367 0.372 0.000 0.000 0.000 0.000 0002 0.008 0.028 0.082 0.133 0.210 0.478 4
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Discrete Probability Distributions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON