Show the function T : R² → R³ given by T(x, y) = (x − y, 3x + 2y, 0) is linear.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem Statement:**

1. Show the function \( T : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) given by \( T(x, y) = (x - y, 3x + 2y, 0) \) is linear.

---

**Explanation:**

To demonstrate that the function \( T : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) defined by \( T(x, y) = (x - y, 3x + 2y, 0) \) is linear, you need to verify two main properties of linearity: 

1. **Additivity:**
   \( T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) \)

2. **Homogeneity:**
   \( T(c\mathbf{u}) = cT(\mathbf{u}) \)

where \( \mathbf{u} \) and \( \mathbf{v} \) are vectors in \( \mathbb{R}^2 \) and \( c \) is a scalar.

Proof of linearity involves the following steps:

### 1. Additivity
Let \( \mathbf{u} = (u_1, u_2) \) and \( \mathbf{v} = (v_1, v_2) \) be two vectors in \( \mathbb{R}^2 \).

Calculate \( T(\mathbf{u} + \mathbf{v}) \):
\[ \mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2) \]
\[ T(\mathbf{u} + \mathbf{v}) = T(u_1 + v_1, u_2 + v_2) \]
\[ = ((u_1 + v_1) - (u_2 + v_2), 3(u_1 + v_1) + 2(u_2 + v_2), 0) \]
\[ = (u_1 - u_2 + v_1 - v_2, 3u_1 + 3v_1 + 2u_2 + 2v_2, 0) \]

Now, calculate \( T(\mathbf{u}) \) and
Transcribed Image Text:**Problem Statement:** 1. Show the function \( T : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) given by \( T(x, y) = (x - y, 3x + 2y, 0) \) is linear. --- **Explanation:** To demonstrate that the function \( T : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) defined by \( T(x, y) = (x - y, 3x + 2y, 0) \) is linear, you need to verify two main properties of linearity: 1. **Additivity:** \( T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) \) 2. **Homogeneity:** \( T(c\mathbf{u}) = cT(\mathbf{u}) \) where \( \mathbf{u} \) and \( \mathbf{v} \) are vectors in \( \mathbb{R}^2 \) and \( c \) is a scalar. Proof of linearity involves the following steps: ### 1. Additivity Let \( \mathbf{u} = (u_1, u_2) \) and \( \mathbf{v} = (v_1, v_2) \) be two vectors in \( \mathbb{R}^2 \). Calculate \( T(\mathbf{u} + \mathbf{v}) \): \[ \mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2) \] \[ T(\mathbf{u} + \mathbf{v}) = T(u_1 + v_1, u_2 + v_2) \] \[ = ((u_1 + v_1) - (u_2 + v_2), 3(u_1 + v_1) + 2(u_2 + v_2), 0) \] \[ = (u_1 - u_2 + v_1 - v_2, 3u_1 + 3v_1 + 2u_2 + 2v_2, 0) \] Now, calculate \( T(\mathbf{u}) \) and
Expert Solution
steps

Step by step

Solved in 4 steps with 19 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,