Show that the given set of functions is orthogonal on the indicated interval. Find the norm of each function in the set. {1, cos(x)}, n = n = 1, 2, 3, ... ; [0, p] For m # n P m) Lº cos(x) cos((2x) dx = 21" (ccs( 19 - 04x) + ( cos( COS . || = 0 1 H|2 sin((n - m)n)x P (n-m)n P (n + m) n P -X (sin((n + m)))x P (n + m)π P )) dx ) X

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Show that the given set of functions is orthogonal on the indicated interval. Find the norm of each function in the set.
{1, cos(x)}, n =
For m # n
n = 1, 2, 3, ...; [0, p]
P
-
COS
dx =
L ²00 (² x ) 20 (1 x) Cx - + [² ( c²²( 10 = ² x) = (cos((n + m) x.
+ COS
-X
2
р
||
=
0
1
2
sin((n - m)n)x
P
(n-m)n
P
(sin((n + m)))x
P
(n + m)π
P
)) dx
)
Xx
Transcribed Image Text:Show that the given set of functions is orthogonal on the indicated interval. Find the norm of each function in the set. {1, cos(x)}, n = For m # n n = 1, 2, 3, ...; [0, p] P - COS dx = L ²00 (² x ) 20 (1 x) Cx - + [² ( c²²( 10 = ² x) = (cos((n + m) x. + COS -X 2 р || = 0 1 2 sin((n - m)n)x P (n-m)n P (sin((n + m)))x P (n + m)π P )) dx ) Xx
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,