Show that the given function is a solution of the differential equation. dy dx dy dx || +9y = e-9x . y = xe -9x -9x + 8e dy Substituting and y into the original equation gives dx +9(xe -9x + 8e-9x) = e-⁹x. The solution checks.
Show that the given function is a solution of the differential equation. dy dx dy dx || +9y = e-9x . y = xe -9x -9x + 8e dy Substituting and y into the original equation gives dx +9(xe -9x + 8e-9x) = e-⁹x. The solution checks.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Show that the given function is a solution of the
*** Please see attachment
![**Differential Equation Verification**
To determine if the given function is a solution of the differential equation:
\[
\frac{dy}{dx} + 9y = e^{-9x}, \quad y = xe^{-9x} + 8e^{-9x}
\]
**Step 1: Differentiate \( y \)**
\[
\frac{dy}{dx} = \text{[Compute the derivative of \( y = xe^{-9x} + 8e^{-9x} \) here]}
\]
**Step 2: Substitute \(\frac{dy}{dx}\) and \( y \) into the original equation**
\[
\text{Substituting } \frac{dy}{dx} \text{ and } y \text{ into the original equation gives:}
\]
\[
\quad [\frac{dy}{dx} \text{ (calculated value)}] + 9(xe^{-9x} + 8e^{-9x}) = e^{-9x}
\]
The solution checks out as the left side equals the right side.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F50b7307d-f147-4c39-812e-01e48cbfa721%2Fe404aa4a-3a7d-43b3-89a7-8d5007e7c4e7%2Fa8ymt0k_processed.png&w=3840&q=75)
Transcribed Image Text:**Differential Equation Verification**
To determine if the given function is a solution of the differential equation:
\[
\frac{dy}{dx} + 9y = e^{-9x}, \quad y = xe^{-9x} + 8e^{-9x}
\]
**Step 1: Differentiate \( y \)**
\[
\frac{dy}{dx} = \text{[Compute the derivative of \( y = xe^{-9x} + 8e^{-9x} \) here]}
\]
**Step 2: Substitute \(\frac{dy}{dx}\) and \( y \) into the original equation**
\[
\text{Substituting } \frac{dy}{dx} \text{ and } y \text{ into the original equation gives:}
\]
\[
\quad [\frac{dy}{dx} \text{ (calculated value)}] + 9(xe^{-9x} + 8e^{-9x}) = e^{-9x}
\]
The solution checks out as the left side equals the right side.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)