Show that the following  function has exactly one critical point. Use Newton’s method to obtain an approximation to the critical point of f(x), by calculating the first iteraton x1​ with x0=0. f(x)=ex+2x2+x

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
icon
Concept explainers
Question
100%

Show that the following  function has exactly one critical point.

Use Newton’s method to obtain an approximation to the critical point of f(x), by calculating the first iteraton x1​ with x0=0.

f(x)=ex+2x2+x

Expert Solution
Step 1

Newton-Raphson method or Newton's method is one of the most widely used techniques to find the root of a non-linear equation.

This method requires an initial value, which serves as an initial guess of the root.

the root is approximated after several iterations which is given by:

                                                                                                                   Calculus homework question answer, step 1, image 1

                                                                                     where n+1 is the no. of iterations

                                                                                                  xn : previous or assumed value of the root

                                                                                                xn+1: next value of the root

                                                                                                 f(x) is the given function

                                                                                         and f'(x) is the derivative of function f(x)

Step 2

critical points of a function f(x) are the points where slope or f'(x)=0.

here in this graph point, C is the critical point

 

Calculus homework question answer, step 2, image 1

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
Application of Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning