Show that the elimination method of computing the value of the determinant of an n × n matrix involves [n(n − 1)(2n − 1)]/6 additions and [(n − 1)(n2 + n + 3)]/3 multiplications and divisions. Hint: At the ith step of the reduction process, it takes n − i divisions to calculate the multiples of the ith row that are to be subtracted from the remaining rows below the pivot. We must then calculate new values for the (n − i)2 entries in rows i + 1 through n and columns i + 1 through n.
Show that the elimination method of computing the value of the determinant of an n × n matrix involves [n(n − 1)(2n − 1)]/6 additions and [(n − 1)(n2 + n + 3)]/3 multiplications and divisions. Hint: At the ith step of the reduction process, it takes n − i divisions to calculate the multiples of the ith row that are to be subtracted from the remaining rows below the pivot. We must then calculate new values for the (n − i)2 entries in rows i + 1 through n and columns i + 1 through n.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Show that the elimination method of computing
the value of the determinant of an n × n matrix
involves [n(n − 1)(2n − 1)]/6 additions and
[(n − 1)(n2 + n + 3)]/3 multiplications and divisions.
Hint: At the ith step of the reduction process,
it takes n − i divisions to calculate the multiples
of the ith row that are to be subtracted from the
remaining rows below the pivot. We must then calculate
new values for the (n − i)2 entries in rows
i + 1 through n and columns i + 1 through n.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,