Show that \sin{(3x)} = 3\sin{(x)} - 4\sin^{3}{(x)}\text{.} You will need to use five expressions in total ordered from top to bottom. Suggestion: Note that \sin{(3x)} = \sin{(x+ 2x)}\text{,} and then apply sum and double-angle formulas. (\sin{(3x)} = \sin{(x+ 2x)}\)
Show that \sin{(3x)} = 3\sin{(x)} - 4\sin^{3}{(x)}\text{.} You will need to use five expressions in total ordered from top to bottom. Suggestion: Note that \sin{(3x)} = \sin{(x+ 2x)}\text{,} and then apply sum and double-angle formulas. (\sin{(3x)} = \sin{(x+ 2x)}\)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question

Transcribed Image Text:Answer Bank
sin (3x) = sin (x)(3 cos² (x) – sin² (x))
sin (3x) = sin (x) cos (2x) – cos (x) sin (2x)
sin (3x) = sin (x) cos (2x) + cos (x) sin (2x)
sin (3x) = sin (x)(3 – 2 sin² (x))
sin (3x) = sin (x)(-(1 – sin² (x)) – sin² (x))
sin (3x) = sin (x) sin (2x) + cos (x) cos (2x)
sin (3x) = sin (x)(cos² (x) – sin² (x)) +2 sin (x) cos (x) cos (x)
sin (3x) = sin (x)(- cos² (x) – sin² (x))
sin (3x) = sin (x)(cos² (x) – sin² (x)) – 2 sin (x) cos (x) cos (x)
sin (3x) = 2 sin (x) sin (x) cos (x) + cos (x)(cos? (x) – sin? (x))
sin (3x) = cos (x)(cos² (x) + sin² (x))
sin (3x) = sin (x)(3(1 – sin² (x) – sin² (x))
sin (3x) = sin (x)(3 – 4 sin? (x))

Transcribed Image Text:Show that \sin{(3x)} = 3\sin{(x)} - 4\sin^{3}{(x)}\text{.} You will need to use five expressions in total ordered from top to
bottom.
Suggestion: Note that \sin{(3x)} = \sin{(x+ 2x)}\text{,} and then apply sum and double-angle formulas.
(\sin{(3x)} = \sin{(x + 2x)}\)
\(\sin{(3x)} = 3\sin{(x)} - 4\sin^{3}{(x)}\)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 3 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

