Show that \sin{(3x)} = 3\sin{(x)} - 4\sin^{3}{(x)}\text{.} You will need to use five expressions in total ordered from top to bottom. Suggestion: Note that \sin{(3x)} = \sin{(x+ 2x)}\text{,} and then apply sum and double-angle formulas. (\sin{(3x)} = \sin{(x+ 2x)}\)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question
Answer Bank
sin (3x) = sin (x)(3 cos² (x) – sin² (x))
sin (3x) = sin (x) cos (2x) – cos (x) sin (2x)
sin (3x) = sin (x) cos (2x) + cos (x) sin (2x)
sin (3x) = sin (x)(3 – 2 sin² (x))
sin (3x) = sin (x)(-(1 – sin² (x)) – sin² (x))
sin (3x) = sin (x) sin (2x) + cos (x) cos (2x)
sin (3x) = sin (x)(cos² (x) – sin² (x)) +2 sin (x) cos (x) cos (x)
sin (3x) = sin (x)(- cos² (x) – sin² (x))
sin (3x) = sin (x)(cos² (x) – sin² (x)) – 2 sin (x) cos (x) cos (x)
sin (3x) = 2 sin (x) sin (x) cos (x) + cos (x)(cos? (x) – sin? (x))
sin (3x) = cos (x)(cos² (x) + sin² (x))
sin (3x) = sin (x)(3(1 – sin² (x) – sin² (x))
sin (3x) = sin (x)(3 – 4 sin? (x))
Transcribed Image Text:Answer Bank sin (3x) = sin (x)(3 cos² (x) – sin² (x)) sin (3x) = sin (x) cos (2x) – cos (x) sin (2x) sin (3x) = sin (x) cos (2x) + cos (x) sin (2x) sin (3x) = sin (x)(3 – 2 sin² (x)) sin (3x) = sin (x)(-(1 – sin² (x)) – sin² (x)) sin (3x) = sin (x) sin (2x) + cos (x) cos (2x) sin (3x) = sin (x)(cos² (x) – sin² (x)) +2 sin (x) cos (x) cos (x) sin (3x) = sin (x)(- cos² (x) – sin² (x)) sin (3x) = sin (x)(cos² (x) – sin² (x)) – 2 sin (x) cos (x) cos (x) sin (3x) = 2 sin (x) sin (x) cos (x) + cos (x)(cos? (x) – sin? (x)) sin (3x) = cos (x)(cos² (x) + sin² (x)) sin (3x) = sin (x)(3(1 – sin² (x) – sin² (x)) sin (3x) = sin (x)(3 – 4 sin? (x))
Show that \sin{(3x)} = 3\sin{(x)} - 4\sin^{3}{(x)}\text{.} You will need to use five expressions in total ordered from top to
bottom.
Suggestion: Note that \sin{(3x)} = \sin{(x+ 2x)}\text{,} and then apply sum and double-angle formulas.
(\sin{(3x)} = \sin{(x + 2x)}\)
\(\sin{(3x)} = 3\sin{(x)} - 4\sin^{3}{(x)}\)
Transcribed Image Text:Show that \sin{(3x)} = 3\sin{(x)} - 4\sin^{3}{(x)}\text{.} You will need to use five expressions in total ordered from top to bottom. Suggestion: Note that \sin{(3x)} = \sin{(x+ 2x)}\text{,} and then apply sum and double-angle formulas. (\sin{(3x)} = \sin{(x + 2x)}\) \(\sin{(3x)} = 3\sin{(x)} - 4\sin^{3}{(x)}\)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,