Show that if f(2) is analytic for |z| <1+e, then for any z = rei® with r < 1, 5. eit z dt = 0 1– žeit 1 (a) 2n Jo eit -dt = f(z) eit – z (b) f(e“)- 27

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

[Complex Variables] How do you solve this? The second picture is a hint

5.
Show that if f(2) is analytic for |2| < 1+ €, then for any z = reio
with r < 1,
(a)
eit z
dt = 0
1– žeit
27
eit
-dt = f(2)
(b)
f(e“)-
eit
Transcribed Image Text:5. Show that if f(2) is analytic for |2| < 1+ €, then for any z = reio with r < 1, (a) eit z dt = 0 1– žeit 27 eit -dt = f(2) (b) f(e“)- eit
Step1. Write the integral as a curve integral , F(w)dw with w = e", and let z be a parameter, which is a fixed conatant. Now what is F(w)?
Step2. Use Cauchy's theorem. (hint of the hint: if z is inside the unit circle, where should - be?)
Transcribed Image Text:Step1. Write the integral as a curve integral , F(w)dw with w = e", and let z be a parameter, which is a fixed conatant. Now what is F(w)? Step2. Use Cauchy's theorem. (hint of the hint: if z is inside the unit circle, where should - be?)
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,