Show that if a, b, c ER then: (a) a−b=-(b-a). (b) (a + b)(ab) - a(a - b) + b(b-a) = 0. (c) a b=0⇒a=0 o b=0. (d) (-a)(cd) = ad - ac.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question
100%
段階的に解決し、 人工知能を使用せず、 優れた仕事を行います
ご支援ありがとうございました
SOLVE STEP BY STEP IN DIGITAL FORMAT
DON'T USE AI | DON'T USE AI DON'T USE AI DON'T USE AI
Show that if a, b, c ER then:
(a) a-b=-(b-a).
(b) (a+b)(a-b)-a(a-b)+b(b-a) = 0.
(c) a.b=0⇔a=0o6=0.
(d) (-a)(c-d) = ad-ac.
Transcribed Image Text:段階的に解決し、 人工知能を使用せず、 優れた仕事を行います ご支援ありがとうございました SOLVE STEP BY STEP IN DIGITAL FORMAT DON'T USE AI | DON'T USE AI DON'T USE AI DON'T USE AI Show that if a, b, c ER then: (a) a-b=-(b-a). (b) (a+b)(a-b)-a(a-b)+b(b-a) = 0. (c) a.b=0⇔a=0o6=0. (d) (-a)(c-d) = ad-ac.
Expert Solution
Step 1: Proof the first part (a)

To prove 

a minus b equals negative left parenthesis b minus a right parenthesis
L. H. S equals a minus b
T h e n space
R. H. S equals negative left parenthesis b minus a right parenthesis equals negative b minus left parenthesis negative a right parenthesis equals negative b plus a equals a minus b
T h u s space a minus b equals negative left parenthesis b minus a right parenthesis space space a comma b element of space R.

Hence proved.

steps

Step by step

Solved in 4 steps with 5 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,