Family of Curves
A family of curves is a group of curves that are each described by a parametrization in which one or more variables are parameters. In general, the parameters have more complexity on the assembly of the curve than an ordinary linear transformation. These families appear commonly in the solution of differential equations. When a constant of integration is added, it is normally modified algebraically until it no longer replicates a plain linear transformation. The order of a differential equation depends on how many uncertain variables appear in the corresponding curve. The order of the differential equation acquired is two if two unknown variables exist in an equation belonging to this family.
XZ Plane
In order to understand XZ plane, it's helpful to understand two-dimensional and three-dimensional spaces. To plot a point on a plane, two numbers are needed, and these two numbers in the plane can be represented as an ordered pair (a,b) where a and b are real numbers and a is the horizontal coordinate and b is the vertical coordinate. This type of plane is called two-dimensional and it contains two perpendicular axes, the horizontal axis, and the vertical axis.
Euclidean Geometry
Geometry is the branch of mathematics that deals with flat surfaces like lines, angles, points, two-dimensional figures, etc. In Euclidean geometry, one studies the geometrical shapes that rely on different theorems and axioms. This (pure mathematics) geometry was introduced by the Greek mathematician Euclid, and that is why it is called Euclidean geometry. Euclid explained this in his book named 'elements'. Euclid's method in Euclidean geometry involves handling a small group of innately captivate axioms and incorporating many of these other propositions. The elements written by Euclid are the fundamentals for the study of geometry from a modern mathematical perspective. Elements comprise Euclidean theories, postulates, axioms, construction, and mathematical proofs of propositions.
Lines and Angles
In a two-dimensional plane, a line is simply a figure that joins two points. Usually, lines are used for presenting objects that are straight in shape and have minimal depth or width.
![**Title: Proving Parallel Lines in Triangles**
**Objective:**
Show that \( BE \) and \( CD \) are parallel.
**Diagram Description:**
The image depicts a triangle \( ABC \). The point \( D \) is on the extension of side \( AB \) such that \( AC \) and \( CD \) form the triangle \( ACD \). The points \( B \) and \( E \) are marked on sides \( AC \) and \( AD \) respectively. \( BE \) and \( CD \) are two line segments drawn inside the triangle.
**Given Measurements:**
- \( AB = 12 \)
- \( AE = 12 \)
- \( AD = 18 \)
- \( BE \) is perpendicular to \( AD \).
- \( CD \) is perpendicular to \( AD \).
- \( AC = 13.5 \)
- \( CB = 9 \)
**Explanation:**
To prove that \( BE \parallel CD \), we can use the properties of similar triangles and parallel lines.
1. Identify triangles \( ABE \) and \( CDE \):
- Both triangles share the angle \( A \).
- Both contain the right angles at \( BE \) and \( CD \) respectively.
2. Use the intercept theorem (or Thales' theorem):
- Triangles \( ABE \) and \( CDE \) are similar by AA similarity criterion (since both have a right angle and share angle \( A \)).
3. Apply the theorem proportionally:
- In similar triangles, corresponding sides are proportional, so:
\[
\frac{AB}{AC} = \frac{AE}{AD}
\]
Substituting the given values:
\[
\frac{12}{13.5} = \frac{12}{18}
\]
Simplify both fractions:
\[
\frac{4}{4.5} = \frac{2}{3}
\]
\[
\frac{4}{4.5} = \frac{2}{3}
\]
This equality confirms that the triangles are cut by two parallel lines because corresponding sides are proportional.
Therefore, since \( \frac{AB}{AC} = \frac{AE}{AD} \), lines \( BE \) and \( CD \](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F3785ad64-93eb-4008-8832-b47a1a40c0c9%2F46abb124-bc44-417b-85ac-518dab51f938%2Fvskwwz7_processed.jpeg&w=3840&q=75)

Step by step
Solved in 2 steps




