Show that B is the inverse of A. A [5 8

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
**Title: Verifying the Inverse of a Matrix**

**Objective:** Demonstrate that matrix \( B \) is the inverse of matrix \( A \).

---

**Given Matrices:**

Matrix \( A \) is:

\[
A = \begin{bmatrix} 1 & 2 \\ 5 & 8 \end{bmatrix}
\]

Matrix \( B \) is proposed as the inverse of \( A \):

\[
B = \begin{bmatrix} -4 & 1 \\ \frac{5}{2} & -\frac{1}{2} \end{bmatrix}
\]

---

**Verification Process:**

To verify \( B \) is the inverse of \( A \), we need to show:

1. \( AB = I \)
2. \( BA = I \)

Where \( I \) is the identity matrix:

\[
I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\]

---

**Calculations:**

1. **Calculate \( AB \):**

   \[
   AB = \begin{bmatrix} 1 & 2 \\ 5 & 8 \end{bmatrix} \begin{bmatrix} -4 & 1 \\ \frac{5}{2} & -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} \text{(To be filled)} & \text{(To be filled)} \\ \text{(To be filled)} & \text{(To be filled)} \end{bmatrix} = I
   \]

2. **Calculate \( BA \):**

   \[
   BA = \begin{bmatrix} -4 & 1 \\ \frac{5}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 5 & 8 \end{bmatrix} = \begin{bmatrix} \text{(To be filled)} & \text{(To be filled)} \\ \text{(To be filled)} & \text{(To be filled)} \end{bmatrix} = I
   \]

---

**Diagram Explanation:**

The image contains empty boxes to be filled during the matrix multiplication process. Green arrows indicate the intended calculations resulting in the identity matrix.
Transcribed Image Text:**Title: Verifying the Inverse of a Matrix** **Objective:** Demonstrate that matrix \( B \) is the inverse of matrix \( A \). --- **Given Matrices:** Matrix \( A \) is: \[ A = \begin{bmatrix} 1 & 2 \\ 5 & 8 \end{bmatrix} \] Matrix \( B \) is proposed as the inverse of \( A \): \[ B = \begin{bmatrix} -4 & 1 \\ \frac{5}{2} & -\frac{1}{2} \end{bmatrix} \] --- **Verification Process:** To verify \( B \) is the inverse of \( A \), we need to show: 1. \( AB = I \) 2. \( BA = I \) Where \( I \) is the identity matrix: \[ I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \] --- **Calculations:** 1. **Calculate \( AB \):** \[ AB = \begin{bmatrix} 1 & 2 \\ 5 & 8 \end{bmatrix} \begin{bmatrix} -4 & 1 \\ \frac{5}{2} & -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} \text{(To be filled)} & \text{(To be filled)} \\ \text{(To be filled)} & \text{(To be filled)} \end{bmatrix} = I \] 2. **Calculate \( BA \):** \[ BA = \begin{bmatrix} -4 & 1 \\ \frac{5}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 5 & 8 \end{bmatrix} = \begin{bmatrix} \text{(To be filled)} & \text{(To be filled)} \\ \text{(To be filled)} & \text{(To be filled)} \end{bmatrix} = I \] --- **Diagram Explanation:** The image contains empty boxes to be filled during the matrix multiplication process. Green arrows indicate the intended calculations resulting in the identity matrix.
Expert Solution
Step 1

Given data:

 

The first matrix given is A=1258.

 

The second matrix given is B=-415/2-1/2.

 

 

Evaluate the value of the AB matrix.

AB=1258-415/2-1/2=(-4+2(5/2))(1+2(-1/2))(5(-4)+8(5/2))(5+8(-1/2))=(-4+5)(1-1)(-20+20)(5-4)=1001

This is equal to the identity matrix of order 2.

 

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Inverse of a Matrix
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education