Show that any vector field of the form F(x, y, z) = f(x)i + g(y)j + h(z)k where f, g, h are differentiable functions, is irrotational. By the definition of irrotational, a vector field F is irrotational if and only if curl(F) curl(F) i a j Ә k Ә ax ay az f(x) g(y) h(z)| = 0. Let F(x, y, z) = f(x)i + g(y)j + h(z)k, where f, g, and h are differentiable functions. Then
Show that any vector field of the form F(x, y, z) = f(x)i + g(y)j + h(z)k where f, g, h are differentiable functions, is irrotational. By the definition of irrotational, a vector field F is irrotational if and only if curl(F) curl(F) i a j Ә k Ә ax ay az f(x) g(y) h(z)| = 0. Let F(x, y, z) = f(x)i + g(y)j + h(z)k, where f, g, and h are differentiable functions. Then
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![Show that any vector field of the form
F(x, y, z) = f(x)i + g(y)j + h(z) k
where f, g, h are differentiable functions, is irrotational.
By the definition of irrotational, a vector field F is irrotational if and only if curl(F) +
curl(F) ♦
curl(F)
=
→
=
=
i j k
Ә Ə
Thus, F is irrotational.
€ 80
ду дz
f(x) g(y) h(z)
Ə
ду
i
- 0 €
h(z) = ·)-
Ә
Əx
+
Ә
Əx
h(z) =
Since f(x), g(y), and h(z) are each a function of one variable, x, y, and z, respectively, we get
j k
Ə Ə
g(y) =
Əx ду дz
8
f(x) g(y) h(z)
Ә
əz
)-
D)₁-(
g(y) =
Ә
дz
ə
ду
f(x) =
f(x) =
])i + (
k = 0.
= 0. Let F(x, y, z) =
f(x)i + g(y)j + h(z)k, where f, g, and h are differentiable functions. Then](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fcba349ba-24b3-488a-bfb6-9b4d734e7572%2F8c56a9f8-2b14-41b8-8ab3-9a23dc11c768%2Fp28et3h_processed.png&w=3840&q=75)
Transcribed Image Text:Show that any vector field of the form
F(x, y, z) = f(x)i + g(y)j + h(z) k
where f, g, h are differentiable functions, is irrotational.
By the definition of irrotational, a vector field F is irrotational if and only if curl(F) +
curl(F) ♦
curl(F)
=
→
=
=
i j k
Ә Ə
Thus, F is irrotational.
€ 80
ду дz
f(x) g(y) h(z)
Ə
ду
i
- 0 €
h(z) = ·)-
Ә
Əx
+
Ә
Əx
h(z) =
Since f(x), g(y), and h(z) are each a function of one variable, x, y, and z, respectively, we get
j k
Ə Ə
g(y) =
Əx ду дz
8
f(x) g(y) h(z)
Ә
əz
)-
D)₁-(
g(y) =
Ә
дz
ə
ду
f(x) =
f(x) =
])i + (
k = 0.
= 0. Let F(x, y, z) =
f(x)i + g(y)j + h(z)k, where f, g, and h are differentiable functions. Then
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning