Show that aj +2 aj ↑ 217 Since h> 2, therefore, the series is convergent.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Test for convergence.
Show that
aj +2
aj
Since h2, therefore, the series is convergent.
2
j
Transcribed Image Text:Test for convergence. Show that aj +2 aj Since h2, therefore, the series is convergent. 2 j
8.3 ODE Eigenvalue problems
Example 8.3.1 Legendre Equation
Ly(x) = (1-x²)y"(x) + 2xy'(x) = y(x). (8.23)
Defines an eigenvalue problem when V2
spherical polar coordinates where x = cos
-1 ≤ x ≤ +1. As boundary conditions, the solutions should
be nonsingular at x = ±1.
is separated in
with the range
Using Frobenius method, assume solutions of the form.
From the assumed solution,
Ariken, G., Weber, H., and Harris, F. (2013). Mathematical Methods for Physicists (7 ed.) Elsevier
We get
00
y' = [aj (s +j)xs+j-1,
j=0
Substituting it in Eq. (8.23)
Ž¶
-(1-x²)
y =
-(1-x²)
v = Σ ²₁x
j=0
Σ
j=0
ajxs+j
ajx³+j
aj(s+j)(s+j-1)x+/-2
-aj(s +j) (s + j - 1)x+j-2 +
a₁x²+1 = 0
00
(8.24)
j=0
+ 2x
*-2 + 2x²
Ariken, G., Weber, H., and Harris, F. (2013). Mathematical Methods for Physicists (7 ed.). Elsevier.
aj(s+j)(s+j-1)x+/-2 + 2x
aj(s+j)(s+j-1)xs+j-2
20+0+2 +2²2 946
aj(s+j)x³+/
T=0
aj(s+j)(s+j-1)x+/+ 2x
aj(s +j)x+j-1-2ax²+1 = 0
jo
aj (s+j)(s+j-1)x+j+ 2a,(s+j)-2x+1 :0
ajx = 0.
=o
-ao(s) (s - 1)xs-²-a₁(s + 1)(s)xs-¹-aj(s+j)(s +j-1)xs+j-2
• Σ
+
=0
a(s+j)x³+j-1
Transcribed Image Text:8.3 ODE Eigenvalue problems Example 8.3.1 Legendre Equation Ly(x) = (1-x²)y"(x) + 2xy'(x) = y(x). (8.23) Defines an eigenvalue problem when V2 spherical polar coordinates where x = cos -1 ≤ x ≤ +1. As boundary conditions, the solutions should be nonsingular at x = ±1. is separated in with the range Using Frobenius method, assume solutions of the form. From the assumed solution, Ariken, G., Weber, H., and Harris, F. (2013). Mathematical Methods for Physicists (7 ed.) Elsevier We get 00 y' = [aj (s +j)xs+j-1, j=0 Substituting it in Eq. (8.23) Ž¶ -(1-x²) y = -(1-x²) v = Σ ²₁x j=0 Σ j=0 ajxs+j ajx³+j aj(s+j)(s+j-1)x+/-2 -aj(s +j) (s + j - 1)x+j-2 + a₁x²+1 = 0 00 (8.24) j=0 + 2x *-2 + 2x² Ariken, G., Weber, H., and Harris, F. (2013). Mathematical Methods for Physicists (7 ed.). Elsevier. aj(s+j)(s+j-1)x+/-2 + 2x aj(s+j)(s+j-1)xs+j-2 20+0+2 +2²2 946 aj(s+j)x³+/ T=0 aj(s+j)(s+j-1)x+/+ 2x aj(s +j)x+j-1-2ax²+1 = 0 jo aj (s+j)(s+j-1)x+j+ 2a,(s+j)-2x+1 :0 ajx = 0. =o -ao(s) (s - 1)xs-²-a₁(s + 1)(s)xs-¹-aj(s+j)(s +j-1)xs+j-2 • Σ + =0 a(s+j)x³+j-1
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,