Show that a standing wave given by the equation: y (x, t) = A sin (kx) sin (ωt) satisfies the wave equation, verify that: v0 = ω / k; shows that the standing wave also satisfies the equation of harmonic oscillator: ∂2y(x,t)/∂t2 = −ω2y(x,t),
Show that a standing wave given by the equation: y (x, t) = A sin (kx) sin (ωt) satisfies the wave equation, verify that: v0 = ω / k; shows that the standing wave also satisfies the equation of harmonic oscillator: ∂2y(x,t)/∂t2 = −ω2y(x,t),
Related questions
Question
Show that a standing wave given by the equation: y (x, t) = A sin (kx) sin (ωt) satisfies the wave equation, verify that: v0 = ω / k; shows that the standing wave also satisfies the equation of harmonic oscillator: ∂2y(x,t)/∂t2 = −ω2y(x,t), interpret this result.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps