Show that a set A in ℝ2 is open in the Euclidean metric ⇔ it is open in the max metric.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Show that a set A in ℝ2 is open in the Euclidean metric ⇔ it is open in the max metric.
Hint: As usual, there are two directions to prove in an ⇔. The picture on p73 of the notes may be somewhat helpful.

Cantionary tales Although sn= (-11"
Indeed, since
this is
Examples
Example
Definitions We say
while another
This situation
with
We introduce terminology!
that
is
has convergent subsequences
subsequenos
Conso
Converse to -1,
another prout that
The
the
One
metriz
(-)"
(-1)".n
Definition If a subsequence of
dive-ses
to
real
and
i) has an
40
ii)
has
,A
(-11" is important and interesting,
a
space
r
as an
accumulation print if r=lim Snk for some
subsequence (S) of (su).
say
Lemma A recl-valmed.
not convergent, it
ZK
Sequence
(M,d) has
A
(sn) has
(-1)
(-1)" is dit-gent,
and (-1) 2KH
to 1 Las a constant sey)
(su) of points in
1
an
Lor an
real-valued sequence (su)
(or to-co),
accumulation points at 1,-1
AL
44
76
accumulation point at co
"
40
at co, -00,
put of
i^
is the
sequeare
has accumulation points at 1,0-1,
4
(1, 0,-1,0,1,...)
Accumulation points at I wo give us an alternative way
to talk about unbunded sequences, as the following lemma tells us.
(S₂)
sequence
accumulatim punt at a
.).
-Co
(sa) has no bound from above, and
(sa) has no bund from below.
Transcribed Image Text:Cantionary tales Although sn= (-11" Indeed, since this is Examples Example Definitions We say while another This situation with We introduce terminology! that is has convergent subsequences subsequenos Conso Converse to -1, another prout that The the One metriz (-)" (-1)".n Definition If a subsequence of dive-ses to real and i) has an 40 ii) has ,A (-11" is important and interesting, a space r as an accumulation print if r=lim Snk for some subsequence (S) of (su). say Lemma A recl-valmed. not convergent, it ZK Sequence (M,d) has A (sn) has (-1) (-1)" is dit-gent, and (-1) 2KH to 1 Las a constant sey) (su) of points in 1 an Lor an real-valued sequence (su) (or to-co), accumulation points at 1,-1 AL 44 76 accumulation point at co " 40 at co, -00, put of i^ is the sequeare has accumulation points at 1,0-1, 4 (1, 0,-1,0,1,...) Accumulation points at I wo give us an alternative way to talk about unbunded sequences, as the following lemma tells us. (S₂) sequence accumulatim punt at a .). -Co (sa) has no bound from above, and (sa) has no bund from below.
Profi First, notice
k
and
So it suffices to pone (i). We verify (=) and (5).
As a
subsequence
Now
It follows that
دی
77
that (ii) fullows from (i) by multiplying by -1;
=co) lim-S₁ ===
So
Sux
VM kw >> KW/S₁ <-M.
natural
(The set of such
E): Recursively define the increasing subsequence
by n₁ = 1, and so
NICH
am
(as 3e wal
Smok
IN
Sme diveger to co
[K>N] =>
{nx >M.
arbitrary M is not in bond from above for for
Sme>M.)
(strate))
with neers > Moe and SMK
k→
numbus
is well-defird
Suk
hr of IN
that he is the least
is
and unbranded as
= co
is nunempty since
increasing by construction
"
a)
So
max(KH, Sn₂)
Sn is unlunded,
IN is well-ordered).
Or, just take
N=Min limit
definition!
Sny > Me
Sn has accumulation pt at co.
Transcribed Image Text:Profi First, notice k and So it suffices to pone (i). We verify (=) and (5). As a subsequence Now It follows that دی 77 that (ii) fullows from (i) by multiplying by -1; =co) lim-S₁ === So Sux VM kw >> KW/S₁ <-M. natural (The set of such E): Recursively define the increasing subsequence by n₁ = 1, and so NICH am (as 3e wal Smok IN Sme diveger to co [K>N] => {nx >M. arbitrary M is not in bond from above for for Sme>M.) (strate)) with neers > Moe and SMK k→ numbus is well-defird Suk hr of IN that he is the least is and unbranded as = co is nunempty since increasing by construction " a) So max(KH, Sn₂) Sn is unlunded, IN is well-ordered). Or, just take N=Min limit definition! Sny > Me Sn has accumulation pt at co.
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,