-Show how the series converges absolutely COS s (3n + 1) n5 +4 N3D1
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Problem 22**: Show how the series converges absolutely
\[
\sum_{n=1}^{\infty} \frac{\cos(3n + 1)}{n^5 + 4}
\]
**Explanation**:
This problem involves demonstrating the absolute convergence of the given infinite series. Absolute convergence occurs if the series of absolute values,
\[
\sum_{n=1}^{\infty} \left|\frac{\cos(3n + 1)}{n^5 + 4}\right|
\]
converges. To determine this, you can use various tests such as the Comparison Test, the Ratio Test, or the Root Test. The behavior of \(\cos(3n + 1)\) is bounded as \(-1 \leq \cos(3n + 1) \leq 1\), so the series can be effectively compared with a simpler series for convergence analysis.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F2396c550-bba7-4086-87a5-883b238a150c%2F0b7916d1-5c74-414c-ad52-68b6cc149837%2Fsyxydq_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem 22**: Show how the series converges absolutely
\[
\sum_{n=1}^{\infty} \frac{\cos(3n + 1)}{n^5 + 4}
\]
**Explanation**:
This problem involves demonstrating the absolute convergence of the given infinite series. Absolute convergence occurs if the series of absolute values,
\[
\sum_{n=1}^{\infty} \left|\frac{\cos(3n + 1)}{n^5 + 4}\right|
\]
converges. To determine this, you can use various tests such as the Comparison Test, the Ratio Test, or the Root Test. The behavior of \(\cos(3n + 1)\) is bounded as \(-1 \leq \cos(3n + 1) \leq 1\), so the series can be effectively compared with a simpler series for convergence analysis.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)