Show how the hyperharmonic series of order p, ∑(1/np) (p ∈ E1), converges if p > 1. Hence if p ≤ 1, then ∑_(n=1)^∞ (1/np) ≥ ∑_(n=1)^∞ (1/n) = +∞. or if p > 1, then ∑_(n=1)^∞ (1/np) = 1 + (1/2p + 1/3p) + (1/4p +...+1/7p) + (1/8p +...+1/15p)+...                                 ≤ 1 + (1/2p + 1/2p) + (1/4p +...+1/4p) + (1/8p +...+1/8p)+...                                 = ∑_(n=0)^∞ (2p-1)n, is a convergent geometric series.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Show how the hyperharmonic series of order p,

∑(1/np) (p ∈ E1), converges if p > 1.

Hence if p ≤ 1, then ∑_(n=1)^∞ (1/np) ≥ ∑_(n=1)^∞ (1/n) = +∞.

or if p > 1, then

∑_(n=1)^∞ (1/np) = 1 + (1/2p + 1/3p) + (1/4p +...+1/7p) + (1/8p +...+1/15p)+...

                                ≤ 1 + (1/2p + 1/2p) + (1/4p +...+1/4p) + (1/8p +...+1/8p)+...

                                = ∑_(n=0)^∞ (2p-1)n, is a convergent geometric series.

Why?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Power Series
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,