SHORT ANSWER QUESTIONS: Using radians, find the amplitude and period of each function. Then graph. Show your work 2πt 13) y = 4sin + 14) y = 3cos 3cos (40+)+2 3 T T 3 5m R KIN. 3x 2π 5x 3x T 4 R 7z2z

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
---
### Trigonometric Functions: Amplitude and Period

#### Objective:
Using the graphs provided, determine the amplitude and period of each trigonometric function. Represent the function graphically and show detailed work.

**Short Answer Questions:**

1. **Function 1: \( y = 4\sin\left( \frac{\theta + 2\pi}{3} \right) \)**

    - **Amplitude Calculation:**
        - The amplitude of the function \( y = a \sin(b\theta + c) \) is given by the coefficient \( a \).
        - For \( y = 4 \sin\left( \frac{\theta + 2\pi}{3} \right) \), the amplitude is \( |4| = 4 \).

    - **Period Calculation:**
        - The period of \( y = \sin(b\theta) \) is given by \( \frac{2\pi}{|b|} \).
        - Here, \( b = \frac{1}{3} \), so the period is \( \frac{2\pi}{\frac{1}{3}} = 6\pi \).

    **Graph Explanation:**
    - The x-axis is labeled in multiples of \( \pi \) (i.e., \( -3\pi, -2\pi, -\pi, \pi, 2\pi, 3\pi \)).
    - The y-axis ranges from -4 to 4, indicating the amplitude range.
    - The sinusoidal wave oscillates between 4 and -4 along the y-axis over the period of \( 6\pi \).


2. **Function 2: \( y = 3\cos\left(4\theta + \frac{\pi}{3}\right) + 2 \)**

    - **Amplitude Calculation:**
        - The amplitude of the function \( y = a \cos(b\theta + c) \) is given by the coefficient \( a \).
        - For \( y = 3\cos\left(4\theta + \frac{\pi}{3}\right) + 2 \), the amplitude is \( |3| = 3 \).

    - **Period Calculation:**
        - The period of \( y = \cos(b\theta) \) is given by \( \frac{2\pi}{|b|}
Transcribed Image Text:--- ### Trigonometric Functions: Amplitude and Period #### Objective: Using the graphs provided, determine the amplitude and period of each trigonometric function. Represent the function graphically and show detailed work. **Short Answer Questions:** 1. **Function 1: \( y = 4\sin\left( \frac{\theta + 2\pi}{3} \right) \)** - **Amplitude Calculation:** - The amplitude of the function \( y = a \sin(b\theta + c) \) is given by the coefficient \( a \). - For \( y = 4 \sin\left( \frac{\theta + 2\pi}{3} \right) \), the amplitude is \( |4| = 4 \). - **Period Calculation:** - The period of \( y = \sin(b\theta) \) is given by \( \frac{2\pi}{|b|} \). - Here, \( b = \frac{1}{3} \), so the period is \( \frac{2\pi}{\frac{1}{3}} = 6\pi \). **Graph Explanation:** - The x-axis is labeled in multiples of \( \pi \) (i.e., \( -3\pi, -2\pi, -\pi, \pi, 2\pi, 3\pi \)). - The y-axis ranges from -4 to 4, indicating the amplitude range. - The sinusoidal wave oscillates between 4 and -4 along the y-axis over the period of \( 6\pi \). 2. **Function 2: \( y = 3\cos\left(4\theta + \frac{\pi}{3}\right) + 2 \)** - **Amplitude Calculation:** - The amplitude of the function \( y = a \cos(b\theta + c) \) is given by the coefficient \( a \). - For \( y = 3\cos\left(4\theta + \frac{\pi}{3}\right) + 2 \), the amplitude is \( |3| = 3 \). - **Period Calculation:** - The period of \( y = \cos(b\theta) \) is given by \( \frac{2\pi}{|b|}
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,