Sevens rule, zeros drool def seven_zero(n): Seven is considered a lucky number in Western cultures, whereas zero is what nobody wants to be. We now bring these two opposites briefly together with positive integers that consist of some solid sequence of sevens, followed by some (possibly empty) solid sequence of zeros. Examples of such integers are 7, 77777, 7700000, 77777700, or 700000000000000. A surprising theorem proves that for any positive integer n, there exist infinitely many integers of such seven-zero form that are divisible by n. This function should return the smallest such seven-zero integer. This exercise is about efficiently generating all numbers of the constrained form of sevens and zeros in strictly ascending order to guarantee finding the smallest working such number. This logic might be best written as a generator to yield such numbers. The body of this generator consists of two nested loops. The outer loop iterates through the number of digits d in the current number. For each d, the inner loop iterates through all possible k from one to d to create a number that begins with a block of k sevens, followed by a block of d-k zeros. Most of the work done inside that helper generator, the seven_zero function itself is short and sweet.  n  Expected result 17 7777777777777777 42 7770 103 7777777777777777777777777777777777 77700 77700 2**50 700000000000000000000000000000000000000000000000000 12345 (a behemoth that consists of a total of 822 sevens, followed by a single zero)

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

Sevens rule, zeros drool
def seven_zero(n):
Seven is considered a lucky number in Western cultures, whereas zero is what nobody wants to be. We now bring these two opposites briefly together with positive integers that consist of some solid sequence of sevens, followed by some (possibly empty) solid sequence of zeros. Examples of such integers are 7, 77777, 7700000, 77777700, or 700000000000000. A surprising theorem proves that for any positive integer n, there exist infinitely many integers of such seven-zero form that are divisible by n. This function should return the smallest such seven-zero integer.

This exercise is about efficiently generating all numbers of the constrained form of sevens and zeros in strictly ascending order to guarantee finding the smallest working such number. This logic might be best written as a generator to yield such numbers. The body of this generator consists of two nested loops. The outer loop iterates through the number of digits d in the current number. For each d, the inner loop iterates through all possible k from one to d to create a number that begins with a block of k sevens, followed by a block of d-k zeros. Most of the work done inside that helper
generator, the seven_zero function itself is short and sweet. 

n  Expected result
17 7777777777777777
42 7770
103 7777777777777777777777777777777777
77700 77700
2**50 700000000000000000000000000000000000000000000000000
12345 (a behemoth that consists of a total of 822 sevens, followed by a single zero)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Program on Numbers
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education