Set up, but do not evaluate, an integral that represents the length of the parametric curve Select the correct answer. 10 10 5 10 10 + 32x (In 3)² dx 3 O√1 5 + 3* In 3 dx + 32x( *(In 3)² dx 3²* (In 3)² dx +10²* (In 10)² dx y=3*, 5 ≤ x ≤ 10.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Calculating the Length of a Parametric Curve

#### Problem Statement:
Set up, but do not evaluate, an integral that represents the length of the parametric curve defined by:

\[ y = 3^x, \quad 5 \leq x \leq 10 \]

#### Select the correct answer:

1. \[
   \int_{5}^{10} \sqrt{1 + 3^{2x} (\ln 3)^2} \, dx
   \]
   
2. \[
   \int_{5}^{10} \sqrt{1 + 3^x \ln 3} \, dx
   \]
   
3. \[
   \int_{10}^{5} \sqrt{1 + 3^{2x} (\ln 3)^2} \, dx
   \]
   
4. \[
   \int_{10}^{5} \sqrt{3^{2x} (\ln 3)^2} \, dx
   \]
   
5. \[
   \int_{5}^{3} \sqrt{1 + 10^{2x} (\ln 10)^2} \, dx
   \]

#### Explanation:
To find the arc length of a curve given by \( y = f(x) \) from \( x = a \) to \( x = b \), we use the following integral:

\[ \text{Arc length} = \int_{a}^{b} \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx \]

Given \( y = 3^x \):

1. Compute \(\frac{dy}{dx}\):
\[ 
\frac{dy}{dx} = 3^x \ln 3 
\]

2. Substitute into the arc length formula:
\[ 
\text{Arc length} = \int_{5}^{10} \sqrt{1 + \left(3^x \ln 3\right)^2} \, dx 
\]

Thus, the correct integral is:
\[ 
\int_{5}^{10} \sqrt{1 + 3^{2x} (\ln 3)^2} \, dx 
\]

So, the correct answer is the first option.
Transcribed Image Text:### Calculating the Length of a Parametric Curve #### Problem Statement: Set up, but do not evaluate, an integral that represents the length of the parametric curve defined by: \[ y = 3^x, \quad 5 \leq x \leq 10 \] #### Select the correct answer: 1. \[ \int_{5}^{10} \sqrt{1 + 3^{2x} (\ln 3)^2} \, dx \] 2. \[ \int_{5}^{10} \sqrt{1 + 3^x \ln 3} \, dx \] 3. \[ \int_{10}^{5} \sqrt{1 + 3^{2x} (\ln 3)^2} \, dx \] 4. \[ \int_{10}^{5} \sqrt{3^{2x} (\ln 3)^2} \, dx \] 5. \[ \int_{5}^{3} \sqrt{1 + 10^{2x} (\ln 10)^2} \, dx \] #### Explanation: To find the arc length of a curve given by \( y = f(x) \) from \( x = a \) to \( x = b \), we use the following integral: \[ \text{Arc length} = \int_{a}^{b} \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx \] Given \( y = 3^x \): 1. Compute \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = 3^x \ln 3 \] 2. Substitute into the arc length formula: \[ \text{Arc length} = \int_{5}^{10} \sqrt{1 + \left(3^x \ln 3\right)^2} \, dx \] Thus, the correct integral is: \[ \int_{5}^{10} \sqrt{1 + 3^{2x} (\ln 3)^2} \, dx \] So, the correct answer is the first option.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning