Set up a system of linear equations in two variables and solve for the unknown quantities. One number is twelve more than four times another. Their sum is 27. Find the numbers. Let x represent the smaller number and y represent the larger number. Part: 0 / 4 Part 1 of 4 "One number is twelve more than four times another" can be written as:

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
100%
## Solving a System of Linear Equations in Two Variables

### Problem Statement:
Set up a system of linear equations in two variables and solve for the unknown quantities.

**Given:**
- One number is twelve more than four times another.
- Their sum is 27.

**Goal:** Find the numbers.

### Variables:
Let \( x \) represent the smaller number and \( y \) represent the larger number.

### Steps:

**Part 1 of 4:**
The statement "One number is twelve more than four times another" can be written as:
\[ y = 4x + 12 \]

**Part 2 of 4:**
The sum of the numbers is given as 27. This can be represented by the equation:
\[ x + y = 27 \]

**Part 3 of 4:**
Substitute the expression for \( y \) from the first equation into the second equation:
\[ x + (4x + 12) = 27 \]
\[ 5x + 12 = 27 \]

**Part 4 of 4:**
Solve for \( x \):
\[ 5x + 12 = 27 \]
\[ 5x = 27 - 12 \]
\[ 5x = 15 \]
\[ x = 3 \]

Now, substitute \( x = 3 \) back into the first equation to solve for \( y \):
\[ y = 4(3) + 12 \]
\[ y = 12 + 12 \]
\[ y = 24 \]

### Solution:
The smaller number \( x \) is 3, and the larger number \( y \) is 24. 

### Conclusion:
We have set up and solved a system of linear equations, determining that the two numbers are 3 and 24.

Feel free to practice similar problems and strengthen your understanding of solving systems of linear equations!
Transcribed Image Text:## Solving a System of Linear Equations in Two Variables ### Problem Statement: Set up a system of linear equations in two variables and solve for the unknown quantities. **Given:** - One number is twelve more than four times another. - Their sum is 27. **Goal:** Find the numbers. ### Variables: Let \( x \) represent the smaller number and \( y \) represent the larger number. ### Steps: **Part 1 of 4:** The statement "One number is twelve more than four times another" can be written as: \[ y = 4x + 12 \] **Part 2 of 4:** The sum of the numbers is given as 27. This can be represented by the equation: \[ x + y = 27 \] **Part 3 of 4:** Substitute the expression for \( y \) from the first equation into the second equation: \[ x + (4x + 12) = 27 \] \[ 5x + 12 = 27 \] **Part 4 of 4:** Solve for \( x \): \[ 5x + 12 = 27 \] \[ 5x = 27 - 12 \] \[ 5x = 15 \] \[ x = 3 \] Now, substitute \( x = 3 \) back into the first equation to solve for \( y \): \[ y = 4(3) + 12 \] \[ y = 12 + 12 \] \[ y = 24 \] ### Solution: The smaller number \( x \) is 3, and the larger number \( y \) is 24. ### Conclusion: We have set up and solved a system of linear equations, determining that the two numbers are 3 and 24. Feel free to practice similar problems and strengthen your understanding of solving systems of linear equations!
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Systems of Linear Equations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education