Selection of system boundaries and organisation of the solution. The diagram shows the main steps in a process for producing a polymer. From the following data, calculate the stream flows for a production rate of 10,000 kg/h. Reactor, yield on polymer 100 per cent slurry polymerisation 20 per cent monomer/water conversion 90 per cent catalyst 1 kg/1000 kg monomer short stopping agent 0.5 kg/1000 kg unreacted monomer Filter, wash water approx. 1 kg/1 kg polymer Recovery column, yield 98 per cent (percentage recovered) Dryer, feed ¾5 per cent water, product specification 0.5 per cent H2O Polymer losses in filter and dryer =1 per cent
Selection of system boundaries and organisation of the solution. The diagram shows the main steps in a process for producing a polymer. From the following data, calculate the stream flows for a production rate of 10,000 kg/h. Reactor, yield on polymer 100 per cent slurry polymerisation 20 per cent monomer/water conversion 90 per cent catalyst 1 kg/1000 kg monomer short stopping agent 0.5 kg/1000 kg unreacted monomer Filter, wash water approx. 1 kg/1 kg polymer Recovery column, yield 98 per cent (percentage recovered) Dryer, feed ¾5 per cent water, product specification 0.5 per cent H2O Polymer losses in filter and dryer =1 per cent
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
Related questions
Question
100%
Selection of system boundaries and organisation of the solution.
The diagram shows the main steps in a process for producing a polymer. From the
following data, calculate the stream flows for a production rate of 10,000 kg/h.
Reactor, yield on polymer 100 per cent
slurry polymerisation 20 per cent monomer/water
conversion 90 per cent
catalyst 1 kg/1000 kg monomer
short stopping agent 0.5 kg/1000 kg unreacted monomer
Filter, wash water approx. 1 kg/1 kg polymer
Recovery column, yield 98 per cent (percentage recovered)
Dryer, feed ¾5 per cent water, product specification 0.5 per cent H2O
Polymer losses in filter and dryer =1 per cent
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps with 4 images
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The