Select the FIRST correct reason why the given series converges or choose E for Diverges. A. Comparison with convergent geometric series B. Convergent p series C. Comparison with a convergent p series D. Converges by limit comparison test E. Diverges

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question
### Instructions:
Select the FIRST correct reason why the given series converges or choose E for Diverges.

**Options:**
- **A.** Comparison with convergent geometric series
- **B.** Convergent p series
- **C.** Comparison with a convergent p series
- **D.** Converges by limit comparison test
- **E.** Diverges

### Series:

1. \(\sum_{k=1}^{\infty} \frac{1}{(k+2)(k+3)}\)

2. \(\sum_{k=1}^{\infty} \sin\left(\frac{1}{k}\right)\)

3. \(\sum_{k=1}^{\infty} \frac{(k+1)^3}{k^{9/2}}\)

4. \(\sum_{k=1}^{\infty} \frac{3k^2 + 2}{k^2 + 3k + 2}\)

5. \(\sum_{k=2}^{\infty} \frac{1}{k^2 + 3k + 2}\)

6. \(\sum_{k=1}^{\infty} \frac{k+1}{k^2 + 1}\)

7. \(\sum_{k=2}^{\infty} \frac{1}{(k+3)(\ln(k))^{0.9}}\)

8. \(\sum_{k=2}^{\infty} \frac{\ln(k)}{k^2}\)

9. \(\sum_{k=2}^{\infty} \frac{1}{\sqrt{k \ln(k)}}\)

10. \(\sum_{k=1}^{\infty} \frac{\ln(k)}{\sqrt{2k + 3}}\)
Transcribed Image Text:### Instructions: Select the FIRST correct reason why the given series converges or choose E for Diverges. **Options:** - **A.** Comparison with convergent geometric series - **B.** Convergent p series - **C.** Comparison with a convergent p series - **D.** Converges by limit comparison test - **E.** Diverges ### Series: 1. \(\sum_{k=1}^{\infty} \frac{1}{(k+2)(k+3)}\) 2. \(\sum_{k=1}^{\infty} \sin\left(\frac{1}{k}\right)\) 3. \(\sum_{k=1}^{\infty} \frac{(k+1)^3}{k^{9/2}}\) 4. \(\sum_{k=1}^{\infty} \frac{3k^2 + 2}{k^2 + 3k + 2}\) 5. \(\sum_{k=2}^{\infty} \frac{1}{k^2 + 3k + 2}\) 6. \(\sum_{k=1}^{\infty} \frac{k+1}{k^2 + 1}\) 7. \(\sum_{k=2}^{\infty} \frac{1}{(k+3)(\ln(k))^{0.9}}\) 8. \(\sum_{k=2}^{\infty} \frac{\ln(k)}{k^2}\) 9. \(\sum_{k=2}^{\infty} \frac{1}{\sqrt{k \ln(k)}}\) 10. \(\sum_{k=1}^{\infty} \frac{\ln(k)}{\sqrt{2k + 3}}\)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Series
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,