Select the collection of sets that forms a partitic

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Question:**

Select the collection of sets that forms a partition of \( R \).

**Options:**

1. 
   - \( \{ x \in R : x < 4 \} \)
   - \( \{ x \in R : 2 \leq x \leq 4 \} \)
   - \( \{ x \in R : 2 < x \} \)

2. 
   - \( \{ x \in R : x < 2 \} \)
   - \( \{ x \in R : 2 \leq x < 4 \} \)
   - \( \{ x \in R : 4 \leq x \} \)

3. 
   - \( \{ x \in R : x \leq 2 \} \)
   - \( \{ x \in R : 2 < x < 4 \} \)
   - \( \{ x \in R : 4 < x \} \)

4. 
   - \( \{ x \in R : x < 2 \} \)
   - \( \{ x \in R : 2 < x < 4 \} \)
   - \( \{ x \in R : 4 \leq x \} \)

**Explanation:**

Choose the correct partition from the options where each interval divides the set of real numbers \( R \) such that:
- Each subset is non-empty.
- The union of all subsets equals \( R \).
- Subsets are pairwise disjoint.
Transcribed Image Text:**Question:** Select the collection of sets that forms a partition of \( R \). **Options:** 1. - \( \{ x \in R : x < 4 \} \) - \( \{ x \in R : 2 \leq x \leq 4 \} \) - \( \{ x \in R : 2 < x \} \) 2. - \( \{ x \in R : x < 2 \} \) - \( \{ x \in R : 2 \leq x < 4 \} \) - \( \{ x \in R : 4 \leq x \} \) 3. - \( \{ x \in R : x \leq 2 \} \) - \( \{ x \in R : 2 < x < 4 \} \) - \( \{ x \in R : 4 < x \} \) 4. - \( \{ x \in R : x < 2 \} \) - \( \{ x \in R : 2 < x < 4 \} \) - \( \{ x \in R : 4 \leq x \} \) **Explanation:** Choose the correct partition from the options where each interval divides the set of real numbers \( R \) such that: - Each subset is non-empty. - The union of all subsets equals \( R \). - Subsets are pairwise disjoint.
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,